These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 22699332)
1. Mobility of 4-nonylphenol and di(2-ethylhexyl) phthalate in three agricultural soils irrigated with untreated wastewater. Murillo-Torres R; Durán-Alvarez JC; Prado-Pano B; Jiménez-Cisneros B Water Sci Technol; 2012; 66(2):292-8. PubMed ID: 22699332 [TBL] [Abstract][Full Text] [Related]
2. Distribution and accumulation of endocrine-disrupting chemicals and pharmaceuticals in wastewater irrigated soils in Hebei, China. Chen F; Ying GG; Kong LX; Wang L; Zhao JL; Zhou LJ; Zhang LJ Environ Pollut; 2011 Jun; 159(6):1490-8. PubMed ID: 21477905 [TBL] [Abstract][Full Text] [Related]
3. Sorption behavior of nonylphenol (NP) on sewage-irrigated soil: kinetic and thermodynamic studies. Liao X; Zhang C; Yao L; Li J; Liu M; Xu L; Evalde M Sci Total Environ; 2014 Mar; 473-474():530-6. PubMed ID: 24388903 [TBL] [Abstract][Full Text] [Related]
4. Sorption, desorption and displacement of ibuprofen, estrone, and 17β estradiol in wastewater irrigated and rainfed agricultural soils. Durán-Álvarez JC; Prado B; Ferroud A; Juayerk N; Jiménez-Cisneros B Sci Total Environ; 2014 Mar; 473-474():189-98. PubMed ID: 24370693 [TBL] [Abstract][Full Text] [Related]
5. Impact of long-term wastewater irrigation on sorption and transport of atrazine in Mexican agricultural soils. Müller K; Duwig C; Prado B; Siebe C; Hidalgo C; Etchevers J J Environ Sci Health B; 2012; 47(1):30-41. PubMed ID: 22022786 [TBL] [Abstract][Full Text] [Related]
6. Fate of phthalates and BPA in agricultural and non-agricultural soils of the Paris area (France). Tran BC; Teil MJ; Blanchard M; Alliot F; Chevreuil M Environ Sci Pollut Res Int; 2015 Jul; 22(14):11118-26. PubMed ID: 25794574 [TBL] [Abstract][Full Text] [Related]
7. Sorption behaviour of nonylphenol and nonylphenol monoethoxylate in soils. Milinovic J; Lacorte S; Rigol A; Vidal M Chemosphere; 2015 Nov; 138():952-9. PubMed ID: 25595537 [TBL] [Abstract][Full Text] [Related]
8. Occurrence and risk assessment of phthalate esters (PAEs) in agricultural soils of the Sanjiang Plain, northeast China. Wang H; Liang H; Gao DW Environ Sci Pollut Res Int; 2017 Aug; 24(24):19723-19732. PubMed ID: 28685330 [TBL] [Abstract][Full Text] [Related]
9. Phthalate esters (PAEs): emerging organic contaminants in agricultural soils in peri-urban areas around Guangzhou, China. Zeng F; Cui K; Xie Z; Wu L; Liu M; Sun G; Lin Y; Luo D; Zeng Z Environ Pollut; 2008 Nov; 156(2):425-34. PubMed ID: 18343547 [TBL] [Abstract][Full Text] [Related]
10. Bioavailability of phthalate congeners to earthworms (Eisenia fetida) in artificially contaminated soils. Hu XY; Wen B; Zhang S; Shan XQ Ecotoxicol Environ Saf; 2005 Sep; 62(1):26-34. PubMed ID: 15978288 [TBL] [Abstract][Full Text] [Related]
11. Survey of phthalate pollution in arable soils in China. Hu XY; Wen B; Shan XQ J Environ Monit; 2003 Aug; 5(4):649-53. PubMed ID: 12948243 [TBL] [Abstract][Full Text] [Related]
12. Removal of organic toxic chemicals using the spent mushroom compost of Ganoderma lucidum. Liao CS; Yuan SY; Hung BH; Chang BV J Environ Monit; 2012 Jul; 14(7):1983-8. PubMed ID: 22673540 [TBL] [Abstract][Full Text] [Related]
13. Biochar reduces the bioavailability of di-(2-ethylhexyl) phthalate in soil. He L; Fan S; Müller K; Hu G; Huang H; Zhang X; Lin X; Che L; Wang H Chemosphere; 2016 Jan; 142():24-7. PubMed ID: 26037111 [TBL] [Abstract][Full Text] [Related]
14. Accumulation and leaching potential of some pharmaceuticals and potential endocrine disruptors in soils irrigated with wastewater in the Tula Valley, Mexico. Gibson R; Durán-Álvarez JC; Estrada KL; Chávez A; Jiménez Cisneros B Chemosphere; 2010 Dec; 81(11):1437-45. PubMed ID: 20933253 [TBL] [Abstract][Full Text] [Related]
15. Occurrence and risk assessment of phthalate esters (PAEs) in vegetables and soils of suburban plastic film greenhouses. Wang J; Chen G; Christie P; Zhang M; Luo Y; Teng Y Sci Total Environ; 2015 Aug; 523():129-37. PubMed ID: 25863503 [TBL] [Abstract][Full Text] [Related]
16. The analysis of a group of acidic pharmaceuticals, carbamazepine, and potential endocrine disrupting compounds in wastewater irrigated soils by gas chromatography-mass spectrometry. Durán-Alvarez JC; Becerril-Bravo E; Castro VS; Jiménez B; Gibson R Talanta; 2009 May; 78(3):1159-66. PubMed ID: 19269487 [TBL] [Abstract][Full Text] [Related]
17. Spatial distribution and migration of nonylphenol in groundwater following long-term wastewater irrigation. Wang S; Wu W; Liu F; Yin S; Bao Z; Liu H J Contam Hydrol; 2015; 177-178():85-92. PubMed ID: 25886245 [TBL] [Abstract][Full Text] [Related]
18. Sorption of phthalate acid esters on black carbon from different sources. Xia X; Dai Z; Zhang J J Environ Monit; 2011 Oct; 13(10):2858-64. PubMed ID: 21842075 [TBL] [Abstract][Full Text] [Related]
19. The influence of facility agriculture production on phthalate esters distribution in black soils of northeast China. Zhang Y; Wang P; Wang L; Sun G; Zhao J; Zhang H; Du N Sci Total Environ; 2015 Feb; 506-507():118-25. PubMed ID: 25460946 [TBL] [Abstract][Full Text] [Related]
20. Diversities of phthalate esters in suburban agricultural soils and wasteland soil appeared with urbanization in China. Kong S; Ji Y; Liu L; Chen L; Zhao X; Wang J; Bai Z; Sun Z Environ Pollut; 2012 Nov; 170():161-8. PubMed ID: 22813629 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]