These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 22699562)

  • 1. High-field electron transport in semiconducting zigzag carbon nanotubes.
    Thiagarajan K; Lindefelt U
    Nanotechnology; 2012 Jul; 23(26):265703. PubMed ID: 22699562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron-phonon interaction and transport in semiconducting carbon nanotubes.
    Perebeinos V; Tersoff J; Avouris P
    Phys Rev Lett; 2005 Mar; 94(8):086802. PubMed ID: 15783915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electric-field-dependent charge-carrier velocity in semiconducting carbon nanotubes.
    Chen YF; Fuhrer MS
    Phys Rev Lett; 2005 Dec; 95(23):236803. PubMed ID: 16384328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theory of coherent phonons in carbon nanotubes and graphene nanoribbons.
    Sanders GD; Nugraha AR; Sato K; Kim JH; Kono J; Saito R; Stanton CJ
    J Phys Condens Matter; 2013 Apr; 25(14):144201. PubMed ID: 23478856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Comparison of Photocurrent Mechanisms in Quasi-Metallic and Semiconducting Carbon Nanotube pn-Junctions.
    Chang SW; Hazra J; Amer M; Kapadia R; Cronin SB
    ACS Nano; 2015 Dec; 9(12):11551-6. PubMed ID: 26498635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and electronic properties of the double-wall nanotubes constructed from SiO2 nanotubes encapsulated inside zigzag carbon nanotubes.
    Qiao W; Bai H; Zhu Y; Huang Y
    J Phys Condens Matter; 2012 May; 24(18):185302. PubMed ID: 22481241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mobility in semiconducting carbon nanotubes at finite carrier density.
    Perebeinos V; Tersoff J; Avouris P
    Nano Lett; 2006 Feb; 6(2):205-8. PubMed ID: 16464035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Doping and phonon renormalization in carbon nanotubes.
    Tsang JC; Freitag M; Perebeinos V; Liu J; Avouris P
    Nat Nanotechnol; 2007 Nov; 2(11):725-30. PubMed ID: 18654413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of field-effect mobility and contact resistance of transistors that use solution-processed single-walled carbon nanotubes.
    Cao Q; Han SJ; Tulevski GS; Franklin AD; Haensch W
    ACS Nano; 2012 Jul; 6(7):6471-7. PubMed ID: 22671996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.
    Barone V; Hod O; Peralta JE; Scuseria GE
    Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monte Carlo Study of Electronic Transport in Monolayer InSe.
    Gopalan S; Gaddemane G; Put MLV; Fischetti AMV
    Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31847429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors.
    Zhou X; Park JY; Huang S; Liu J; McEuen PL
    Phys Rev Lett; 2005 Sep; 95(14):146805. PubMed ID: 16241684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective synthesis and device applications of semiconducting single-walled carbon nanotubes using isopropyl alcohol as feedstock.
    Che Y; Wang C; Liu J; Liu B; Lin X; Parker J; Beasley C; Wong HS; Zhou C
    ACS Nano; 2012 Aug; 6(8):7454-62. PubMed ID: 22849386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conductance of carbon nanotubes in a transverse electric field and an arbitrary magnetic field.
    Li TS; Lin MF
    Nanotechnology; 2006 Nov; 17(22):5632-8. PubMed ID: 21727335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron transport in very clean, as-grown suspended carbon nanotubes.
    Cao J; Wang Q; Dai H
    Nat Mater; 2005 Oct; 4(10):745-9. PubMed ID: 16142240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinear transport and heat dissipation in metallic carbon nanotubes.
    Kuroda MA; Cangellaris A; Leburton JP
    Phys Rev Lett; 2005 Dec; 95(26):266803. PubMed ID: 16486384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High yield assembly and electron transport investigation of semiconducting-rich local-gated single-walled carbon nanotube field effect transistors.
    Kormondy KJ; Stokes P; Khondaker SI
    Nanotechnology; 2011 Oct; 22(41):415201. PubMed ID: 21914942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of vacancy-induced magnetism on electronic transport in armchair carbon nanotubes.
    Farghadan R; Saffarzadeh A
    J Phys Condens Matter; 2010 Jun; 22(25):255301. PubMed ID: 21393796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron-phonon interaction model and prediction of thermal energy transport in SOI transistor.
    Jin JS; Lee JS
    J Nanosci Nanotechnol; 2007 Nov; 7(11):4094-100. PubMed ID: 18047127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Widely tunable carrier mobility of boron nitride-embedded graphene.
    Wang J; Zhao R; Liu Z; Liu Z
    Small; 2013 Apr; 9(8):1373-8. PubMed ID: 23512736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.