These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 22699704)

  • 1. Thermal conductivity of silicon and carbon hybrid monolayers: a molecular dynamics study.
    Wang L; Sun H
    J Mol Model; 2012 Nov; 18(11):4811-8. PubMed ID: 22699704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phonon Thermal Transport in Silicene/Graphene Heterobilayer Nanostructures: Effect of Interlayer Interactions.
    Zhou J; Li H; Tang HK; Shao L; Han K; Shen X
    ACS Omega; 2022 Feb; 7(7):5844-5852. PubMed ID: 35224345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phonon thermal properties of graphene from molecular dynamics using different potentials.
    Zou JH; Ye ZQ; Cao BY
    J Chem Phys; 2016 Oct; 145(13):134705. PubMed ID: 27782432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal conductivity of penta-graphene from molecular dynamics study.
    Xu W; Zhang G; Li B
    J Chem Phys; 2015 Oct; 143(15):154703. PubMed ID: 26493918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal transport characterization of stanene/silicene heterobilayer and stanene bilayer nanostructures.
    Noshin M; Khan AI; Subrina S
    Nanotechnology; 2018 May; 29(18):185706. PubMed ID: 29438099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal transport characterization of carbon and silicon doped stanene nanoribbon: an equilibrium molecular dynamics study.
    Navid IA; Subrina S
    RSC Adv; 2018 Sep; 8(55):31690-31699. PubMed ID: 35548196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal conductivity and heat transport properties of nitrogen-doped graphene.
    Goharshadi EK; Mahdizadeh SJ
    J Mol Graph Model; 2015 Nov; 62():74-80. PubMed ID: 26386455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bilateral substrate effect on the thermal conductivity of two-dimensional silicon.
    Zhang X; Bao H; Hu M
    Nanoscale; 2015 Apr; 7(14):6014-22. PubMed ID: 25762032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anomalous temperature dependent thermal conductivity of two-dimensional silicon carbide.
    Islam ASMJ; Islam MS; Ferdous N; Park J; Bhuiyan AG; Hashimoto A
    Nanotechnology; 2019 Nov; 30(44):445707. PubMed ID: 31357179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A theoretical insight into phonon heat transport in graphene/biphenylene superlattice nanoribbons: a molecular dynamic study.
    Farzadian O; Dehaghani MZ; Kostas KV; Mashhadzadeh AH; Spitas C
    Nanotechnology; 2022 Jun; 33(35):. PubMed ID: 35613550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phonon thermal transport in silicene-germanene superlattice: a molecular dynamics study.
    Wang X; Hong Y; Chan PKL; Zhang J
    Nanotechnology; 2017 Jun; 28(25):255403. PubMed ID: 28486215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Small-Nanostructure-Size-Limited Phonon Transport within Composite Films Made of Single-Wall Carbon Nanotubes and Reduced Graphene Oxides.
    Chen Q; Yan X; Wu L; Xiao Y; Wang S; Cheng G; Zheng R; Hao Q
    ACS Appl Mater Interfaces; 2021 Feb; 13(4):5435-5444. PubMed ID: 33492119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal Transport in Multidimensional Silicon-Graphene Hybrid Nanostructures.
    Gong W; Garg R; Guo R; Lee S; Cohen-Karni T; Shen S
    ACS Appl Mater Interfaces; 2021 Oct; 13(42):50206-50212. PubMed ID: 34662104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of doped nitrogen and vacancy defects on the thermal conductivity of graphene nanoribbons.
    Yang H; Tang Y; Gong J; Liu Y; Wang X; Zhao Y; Yang P; Wang S
    J Mol Model; 2013 Nov; 19(11):4781-8. PubMed ID: 24013440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal Transport of Graphene Sheets with Fractal Defects.
    Kang Y; Duan F; Shangguan S; Zhang Y; Zhou T; Si B
    Molecules; 2018 Dec; 23(12):. PubMed ID: 30545085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal Conductivity of Two Types of 2D Carbon Allotropes: a Molecular Dynamics Study.
    Li S; Ren H; Zhang Y; Xie X; Cai K; Li C; Wei N
    Nanoscale Res Lett; 2019 Jan; 14(1):7. PubMed ID: 30618012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shear deformation-induced anisotropic thermal conductivity of graphene.
    Cui L; Shi S; Wei G; Du X
    Phys Chem Chem Phys; 2018 Jan; 20(2):951-957. PubMed ID: 29231938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High bond difference parameter-induced low thermal transmission in carbon allotropes with sp
    Feng Z; Dong H; Ju S; Wen B; Zhang Y; Melnik R
    Phys Chem Chem Phys; 2019 Jun; 21(23):12611-12619. PubMed ID: 31155631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A minimal Tersoff potential for diamond silicon with improved descriptions of elastic and phonon transport properties.
    Fan Z; Wang Y; Gu X; Qian P; Su Y; Ala-Nissila T
    J Phys Condens Matter; 2020 Mar; 32(13):135901. PubMed ID: 31775129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction of thermal conductivity in silicene nanomesh: insights from coherent and incoherent phonon transport.
    Cui L; Shi S; Li Z; Wei G; Du X
    Phys Chem Chem Phys; 2018 Oct; 20(42):27169-27175. PubMed ID: 30338327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.