BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 22699815)

  • 1. Large scale phosphoproteome analysis of LNCaP human prostate cancer cells.
    Myung JK; Sadar MD
    Mol Biosyst; 2012 Aug; 8(8):2174-82. PubMed ID: 22699815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the phosphoproteome in androgen-repressed human prostate cancer cells by Fourier transform ion cyclotron resonance mass spectrometry.
    Wang X; Stewart PA; Cao Q; Sang QX; Chung LW; Emmett MR; Marshall AG
    J Proteome Res; 2011 Sep; 10(9):3920-8. PubMed ID: 21786837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward a global characterization of the phosphoproteome in prostate cancer cells: identification of phosphoproteins in the LNCaP cell line.
    Giorgianni F; Zhao Y; Desiderio DM; Beranova-Giorgianni S
    Electrophoresis; 2007 Jun; 28(12):2027-34. PubMed ID: 17487921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the phosphoproteome in LNCaP prostate cancer cells by in-gel isoelectric focusing and tandem mass spectrometry.
    Chen L; Giorgianni F; Beranova-Giorgianni S
    J Proteome Res; 2010 Jan; 9(1):174-8. PubMed ID: 20044836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of phosphoprotein signatures of archived prostate cancer tissue specimens via proteomic analysis.
    Chen L; Fang B; Giorgianni F; Gingrich JR; Beranova-Giorgianni S
    Electrophoresis; 2011 Aug; 32(15):1984-91. PubMed ID: 21739434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphoproteome analysis demonstrates the potential role of THRAP3 phosphorylation in androgen-independent prostate cancer cell growth.
    Ino Y; Arakawa N; Ishiguro H; Uemura H; Kubota Y; Hirano H; Toda T
    Proteomics; 2016 Apr; 16(7):1069-78. PubMed ID: 26841317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global analysis of protein phosphorylation networks in insulin signaling by sequential enrichment of phosphoproteins and phosphopeptides.
    Fedjaev M; Parmar A; Xu Y; Vyetrogon K; Difalco MR; Ashmarina M; Nifant'ev I; Posner BI; Pshezhetsky AV
    Mol Biosyst; 2012 Apr; 8(5):1461-71. PubMed ID: 22362066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphopeptide Enrichment Coupled with Label-free Quantitative Mass Spectrometry to Investigate the Phosphoproteome in Prostate Cancer.
    Cheng LC; Li Z; Graeber TG; Graham NA; Drake JM
    J Vis Exp; 2018 Aug; (138):. PubMed ID: 30124664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential phosphoprotein levels and pathway analysis identify the transition mechanism of LNCaP cells into androgen-independent cells.
    Wang HQ; Yang B; Xu CL; Wang LH; Zhang YX; Xu B; Ji JT; Sun YH
    Prostate; 2010 Apr; 70(5):508-17. PubMed ID: 19937597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative analysis of changes in the phosphoproteome of maize induced by the plant hormone salicylic acid.
    Wu L; Hu X; Wang S; Tian L; Pang Y; Han Z; Wu L; Chen Y
    Sci Rep; 2015 Dec; 5():18155. PubMed ID: 26659305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential Phosphoproteomic Analysis of Recombinant Chinese Hamster Ovary Cells Following Temperature Shift.
    Henry M; Power M; Kaushik P; Coleman O; Clynes M; Meleady P
    J Proteome Res; 2017 Jul; 16(7):2339-2358. PubMed ID: 28509555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. IFI16 in human prostate cancer.
    Alimirah F; Chen J; Davis FJ; Choubey D
    Mol Cancer Res; 2007 Mar; 5(3):251-9. PubMed ID: 17339605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Macroporous reversed-phase separation of proteins combined with reversed-phase separation of phosphopeptides and tandem mass spectrometry for profiling the phosphoproteome of MDA-MB-231 cells.
    Ye X; Li L
    Electrophoresis; 2014 Dec; 35(24):3479-86. PubMed ID: 24888630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combining Metabolic ¹⁵N Labeling with Improved Tandem MOAC for Enhanced Probing of the Phosphoproteome.
    Thomas M; Huck N; Hoehenwarter W; Conrath U; Beckers GJ
    Methods Mol Biol; 2015; 1306():81-96. PubMed ID: 25930695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High throughput profiling of serum phosphoproteins/peptides using the SELDI-TOF-MS platform.
    Ji L; Jayachandran G; Roth JA
    Methods Mol Biol; 2012; 818():199-216. PubMed ID: 22083825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of Kinase Expression Related to Increased Migration of PC-3M Cells Using Global Comparative Phosphoproteome Analysis.
    Gao Y; Ha YS; Kwon TG; Cho YC; Lee S; Lee JN
    Cancer Genomics Proteomics; 2020; 17(5):543-553. PubMed ID: 32859632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Off-line high-pH reversed-phase fractionation for in-depth phosphoproteomics.
    Batth TS; Francavilla C; Olsen JV
    J Proteome Res; 2014 Dec; 13(12):6176-86. PubMed ID: 25338131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphoproteome profiling of human skin fibroblast cells in response to low- and high-dose irradiation.
    Yang F; Stenoien DL; Strittmatter EF; Wang J; Ding L; Lipton MS; Monroe ME; Nicora CD; Gristenko MA; Tang K; Fang R; Adkins JN; Camp DG; Chen DJ; Smith RD
    J Proteome Res; 2006 May; 5(5):1252-60. PubMed ID: 16674116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the serine/threonine/tyrosine phosphoproteome of the pathogenic bacterium Listeria monocytogenes reveals phosphorylated proteins related to virulence.
    Misra SK; Milohanic E; Aké F; Mijakovic I; Deutscher J; Monnet V; Henry C
    Proteomics; 2011 Nov; 11(21):4155-65. PubMed ID: 21956863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improve the coverage for the analysis of phosphoproteome of HeLa cells by a tandem digestion approach.
    Bian Y; Ye M; Song C; Cheng K; Wang C; Wei X; Zhu J; Chen R; Wang F; Zou H
    J Proteome Res; 2012 May; 11(5):2828-37. PubMed ID: 22468782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.