These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. BOLD Variability is Related to Dopaminergic Neurotransmission and Cognitive Aging. Guitart-Masip M; Salami A; Garrett D; Rieckmann A; Lindenberger U; Bäckman L Cereb Cortex; 2016 May; 26(5):2074-2083. PubMed ID: 25750252 [TBL] [Abstract][Full Text] [Related]
5. Age-related reduction in dopamine D1 receptors in the human brain: from late childhood to adulthood, a positron emission tomography study. Jucaite A; Forssberg H; Karlsson P; Halldin C; Farde L Neuroscience; 2010 Apr; 167(1):104-10. PubMed ID: 20109534 [TBL] [Abstract][Full Text] [Related]
6. Dopamine D(1) receptors and age differences in brain activation during working memory. Bäckman L; Karlsson S; Fischer H; Karlsson P; Brehmer Y; Rieckmann A; MacDonald SW; Farde L; Nyberg L Neurobiol Aging; 2011 Oct; 32(10):1849-56. PubMed ID: 19962789 [TBL] [Abstract][Full Text] [Related]
7. Caudate dopamine D1 receptor density is associated with individual differences in frontoparietal connectivity during working memory. Rieckmann A; Karlsson S; Fischer H; Bäckman L J Neurosci; 2011 Oct; 31(40):14284-90. PubMed ID: 21976513 [TBL] [Abstract][Full Text] [Related]
8. Increased response-time variability is associated with reduced inferior parietal activation during episodic recognition in aging. MacDonald SW; Nyberg L; Sandblom J; Fischer H; Bäckman L J Cogn Neurosci; 2008 May; 20(5):779-86. PubMed ID: 18201127 [TBL] [Abstract][Full Text] [Related]
9. Age-dependent decline of dopamine D1 receptors in human brain: a PET study. Wang Y; Chan GL; Holden JE; Dobko T; Mak E; Schulzer M; Huser JM; Snow BJ; Ruth TJ; Calne DB; Stoessl AJ Synapse; 1998 Sep; 30(1):56-61. PubMed ID: 9704881 [TBL] [Abstract][Full Text] [Related]
15. Dopamine D1 receptor availability is related to social behavior: a positron emission tomography study. Plavén-Sigray P; Gustavsson P; Farde L; Borg J; Stenkrona P; Nyberg L; Bäckman L; Cervenka S Neuroimage; 2014 Nov; 102 Pt 2():590-5. PubMed ID: 25134976 [TBL] [Abstract][Full Text] [Related]
16. Rat-PET study without anesthesia: anesthetics modify the dopamine D1 receptor binding in rat brain. Momosaki S; Hatano K; Kawasumi Y; Kato T; Hosoi R; Kobayashi K; Inoue O; Ito K Synapse; 2004 Dec; 54(4):207-13. PubMed ID: 15476291 [TBL] [Abstract][Full Text] [Related]
17. Dopamine depletion and in vivo binding of PET D1 receptor radioligands: implications for imaging studies in schizophrenia. Guo N; Hwang DR; Lo ES; Huang YY; Laruelle M; Abi-Dargham A Neuropsychopharmacology; 2003 Sep; 28(9):1703-11. PubMed ID: 12813475 [TBL] [Abstract][Full Text] [Related]
18. Brain dopamine d1 receptors in twins discordant for schizophrenia. Hirvonen J; van Erp TG; Huttunen J; Aalto S; Någren K; Huttunen M; Lönnqvist J; Kaprio J; Cannon TD; Hietala J Am J Psychiatry; 2006 Oct; 163(10):1747-53. PubMed ID: 17012685 [TBL] [Abstract][Full Text] [Related]
19. Chronic NMDA antagonism impairs working memory, decreases extracellular dopamine, and increases D1 receptor binding in prefrontal cortex of conscious monkeys. Tsukada H; Nishiyama S; Fukumoto D; Sato K; Kakiuchi T; Domino EF Neuropsychopharmacology; 2005 Oct; 30(10):1861-9. PubMed ID: 15841110 [TBL] [Abstract][Full Text] [Related]
20. Pre- and post-synaptic dopamine imaging and its relation with frontostriatal cognitive function in Parkinson disease: PET studies with [11C]NNC 112 and [18F]FDOPA. Cropley VL; Fujita M; Bara-Jimenez W; Brown AK; Zhang XY; Sangare J; Herscovitch P; Pike VW; Hallett M; Nathan PJ; Innis RB Psychiatry Res; 2008 Jul; 163(2):171-82. PubMed ID: 18504119 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]