These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 22699920)

  • 1. Aging and inhibitory control of action: cortico-subthalamic connection strength predicts stopping performance.
    Coxon JP; Van Impe A; Wenderoth N; Swinnen SP
    J Neurosci; 2012 Jun; 32(24):8401-12. PubMed ID: 22699920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Roles for the pre-supplementary motor area and the right inferior frontal gyrus in stopping action: electrophysiological responses and functional and structural connectivity.
    Swann NC; Cai W; Conner CR; Pieters TA; Claffey MP; George JS; Aron AR; Tandon N
    Neuroimage; 2012 Feb; 59(3):2860-70. PubMed ID: 21979383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cortico-subthalamic white matter tract strength predicts interindividual efficacy in stopping a motor response.
    Forstmann BU; Keuken MC; Jahfari S; Bazin PL; Neumann J; Schäfer A; Anwander A; Turner R
    Neuroimage; 2012 Mar; 60(1):370-5. PubMed ID: 22227131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The prefrontal cortex achieves inhibitory control by facilitating subcortical motor pathway connectivity.
    Rae CL; Hughes LE; Anderson MC; Rowe JB
    J Neurosci; 2015 Jan; 35(2):786-94. PubMed ID: 25589771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional connectivity delineates distinct roles of the inferior frontal cortex and presupplementary motor area in stop signal inhibition.
    Duann JR; Ide JS; Luo X; Li CS
    J Neurosci; 2009 Aug; 29(32):10171-9. PubMed ID: 19675251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maturational trajectories of white matter microstructure underlying the right presupplementary motor area reflect individual improvements in motor response cancellation in children and adolescents.
    Madsen KS; Johansen LB; Thompson WK; Siebner HR; Jernigan TL; Baaré WFC
    Neuroimage; 2020 Oct; 220():117105. PubMed ID: 32615252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Triangulating a cognitive control network using diffusion-weighted magnetic resonance imaging (MRI) and functional MRI.
    Aron AR; Behrens TE; Smith S; Frank MJ; Poldrack RA
    J Neurosci; 2007 Apr; 27(14):3743-52. PubMed ID: 17409238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effective connectivity reveals important roles for both the hyperdirect (fronto-subthalamic) and the indirect (fronto-striatal-pallidal) fronto-basal ganglia pathways during response inhibition.
    Jahfari S; Waldorp L; van den Wildenberg WP; Scholte HS; Ridderinkhof KR; Forstmann BU
    J Neurosci; 2011 May; 31(18):6891-9. PubMed ID: 21543619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional Brain Activation Associated with Inhibitory Control Deficits in Older Adults.
    Coxon JP; Goble DJ; Leunissen I; Van Impe A; Wenderoth N; Swinnen SP
    Cereb Cortex; 2016 Jan; 26(1):12-22. PubMed ID: 25085883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microstructure of a three-way anatomical network predicts individual differences in response inhibition: a tractography study.
    King AV; Linke J; Gass A; Hennerici MG; Tost H; Poupon C; Wessa M
    Neuroimage; 2012 Jan; 59(2):1949-59. PubMed ID: 21939775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cortical and subcortical contributions to Stop signal response inhibition: role of the subthalamic nucleus.
    Aron AR; Poldrack RA
    J Neurosci; 2006 Mar; 26(9):2424-33. PubMed ID: 16510720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decreased cortical and subcortical response to inhibition control after sleep deprivation.
    Zhao R; Zhang X; Fei N; Zhu Y; Sun J; Liu P; Yang X; Qin W
    Brain Imaging Behav; 2019 Jun; 13(3):638-650. PubMed ID: 29748772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Age-Related Changes in Frontal Network Structural and Functional Connectivity in Relation to Bimanual Movement Control.
    Fujiyama H; Van Soom J; Rens G; Gooijers J; Leunissen I; Levin O; Swinnen SP
    J Neurosci; 2016 Feb; 36(6):1808-22. PubMed ID: 26865607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cortical and subcortical interactions during action reprogramming and their related white matter pathways.
    Neubert FX; Mars RB; Buch ER; Olivier E; Rushworth MF
    Proc Natl Acad Sci U S A; 2010 Jul; 107(30):13240-5. PubMed ID: 20622155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Response inhibition is associated with white matter microstructure in children.
    Madsen KS; Baaré WF; Vestergaard M; Skimminge A; Ejersbo LR; Ramsøy TZ; Gerlach C; Akeson P; Paulson OB; Jernigan TL
    Neuropsychologia; 2010 Mar; 48(4):854-62. PubMed ID: 19909763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Age-related Differences in Response Inhibition Are Mediated by Frontoparietal White Matter but Not Functional Activity.
    Parimoo S; Grady C; Olsen R
    J Cogn Neurosci; 2024 Jun; 36(6):1184-1205. PubMed ID: 38579242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disturbed cortico-subcortical interactions during motor task switching in traumatic brain injury.
    Leunissen I; Coxon JP; Geurts M; Caeyenberghs K; Michiels K; Sunaert S; Swinnen SP
    Hum Brain Mapp; 2013 Jun; 34(6):1254-71. PubMed ID: 22287257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stop-signal reaction-time task performance: role of prefrontal cortex and subthalamic nucleus.
    Eagle DM; Baunez C; Hutcheson DM; Lehmann O; Shah AP; Robbins TW
    Cereb Cortex; 2008 Jan; 18(1):178-88. PubMed ID: 17517682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A network centered on ventral premotor cortex exerts both facilitatory and inhibitory control over primary motor cortex during action reprogramming.
    Buch ER; Mars RB; Boorman ED; Rushworth MF
    J Neurosci; 2010 Jan; 30(4):1395-401. PubMed ID: 20107065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surprise: Unexpected Action Execution and Unexpected Inhibition Recruit the Same Fronto-Basal-Ganglia Network.
    Sebastian A; Konken AM; Schaum M; Lieb K; Tüscher O; Jung P
    J Neurosci; 2021 Mar; 41(11):2447-2456. PubMed ID: 33376157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.