These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

363 related articles for article (PubMed ID: 22700328)

  • 1. Emerging applications of atomic layer deposition for lithium-ion battery studies.
    Meng X; Yang XQ; Sun X
    Adv Mater; 2012 Jul; 24(27):3589-615. PubMed ID: 22700328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elegant design of electrode and electrode/electrolyte interface in lithium-ion batteries by atomic layer deposition.
    Liu J; Sun X
    Nanotechnology; 2015 Jan; 26(2):024001. PubMed ID: 25514580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabricating high performance lithium-ion batteries using bionanotechnology.
    Zhang X; Hou Y; He W; Yang G; Cui J; Liu S; Song X; Huang Z
    Nanoscale; 2015 Feb; 7(8):3356-72. PubMed ID: 25640923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards high-energy and durable lithium-ion batteries via atomic layer deposition: elegantly atomic-scale material design and surface modification.
    Meng X
    Nanotechnology; 2015 Jan; 26(2):020501. PubMed ID: 25514439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The development of a new type of rechargeable batteries based on hybrid electrolytes.
    Zhou H; Wang Y; Li H; He P
    ChemSusChem; 2010 Sep; 3(9):1009-19. PubMed ID: 20677207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Challenges Considering the Degradation of Cell Components in Commercial Lithium-Ion Cells: A Review and Evaluation of Present Systems.
    Kleiner K; Ehrenberg H
    Top Curr Chem (Cham); 2017 Jun; 375(3):54. PubMed ID: 28470590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanostructured silicon anodes for lithium ion rechargeable batteries.
    Teki R; Datta MK; Krishnan R; Parker TC; Lu TM; Kumta PN; Koratkar N
    Small; 2009 Oct; 5(20):2236-42. PubMed ID: 19739146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent progress and future prospects of atomic layer deposition to prepare/modify solid-state electrolytes and interfaces between electrodes for next-generation lithium batteries.
    Han L; Hsieh CT; Chandra Mallick B; Li J; Ashraf Gandomi Y
    Nanoscale Adv; 2021 May; 3(10):2728-2740. PubMed ID: 36134177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon-Based Materials for Lithium-Ion Batteries, Electrochemical Capacitors, and Their Hybrid Devices.
    Yao F; Pham DT; Lee YH
    ChemSusChem; 2015 Jul; 8(14):2284-311. PubMed ID: 26140707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile Development Strategy of a Single Carbon-Fiber-Based All-Solid-State Flexible Lithium-Ion Battery for Wearable Electronics.
    Yadav A; De B; Singh SK; Sinha P; Kar KK
    ACS Appl Mater Interfaces; 2019 Feb; 11(8):7974-7980. PubMed ID: 30715836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries.
    Wu HB; Chen JS; Hng HH; Lou XW
    Nanoscale; 2012 Apr; 4(8):2526-42. PubMed ID: 22460594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New nanostructured Li2S/silicon rechargeable battery with high specific energy.
    Yang Y; McDowell MT; Jackson A; Cha JJ; Hong SS; Cui Y
    Nano Lett; 2010 Apr; 10(4):1486-91. PubMed ID: 20184382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid nanostructures for energy storage applications.
    Mohana Reddy AL; Gowda SR; Shaijumon MM; Ajayan PM
    Adv Mater; 2012 Sep; 24(37):5045-64. PubMed ID: 22740354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Building one-dimensional oxide nanostructure arrays on conductive metal substrates for lithium-ion battery anodes.
    Jiang J; Li Y; Liu J; Huang X
    Nanoscale; 2011 Jan; 3(1):45-58. PubMed ID: 20978657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of modified graphene for energy storage applications.
    Shuvo MA; Khan MA; Karim H; Morton P; Wilson T; Lin Y
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7881-5. PubMed ID: 23806171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nano active materials for lithium-ion batteries.
    Wang Y; Li H; He P; Hosono E; Zhou H
    Nanoscale; 2010 Aug; 2(8):1294-305. PubMed ID: 20820717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review on cellulose and lignin based binders and electrodes: Small steps towards a sustainable lithium ion battery.
    Nirmale TC; Kale BB; Varma AJ
    Int J Biol Macromol; 2017 Oct; 103():1032-1043. PubMed ID: 28554795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 25th anniversary article: Understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries.
    McDowell MT; Lee SW; Nix WD; Cui Y
    Adv Mater; 2013 Sep; 25(36):4966-85. PubMed ID: 24038172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ionic Liquids in Lithium-Ion Batteries.
    Balducci A
    Top Curr Chem (Cham); 2017 Apr; 375(2):20. PubMed ID: 28155139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Managing voids of Si anodes in lithium ion batteries.
    Li X; Zhi L
    Nanoscale; 2013 Oct; 5(19):8864-73. PubMed ID: 23942726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.