BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 22700364)

  • 1. Monodisperse, submicrometer droplets via condensation of microfluidic-generated gas bubbles.
    Seo M; Matsuura N
    Small; 2012 Sep; 8(17):2704-14. PubMed ID: 22700364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Size reduction of cosolvent-infused microbubbles to form acoustically responsive monodisperse perfluorocarbon nanodroplets.
    Seo M; Williams R; Matsuura N
    Lab Chip; 2015 Sep; 15(17):3581-90. PubMed ID: 26220563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct incorporation of lipophilic nanoparticles into monodisperse perfluorocarbon nanodroplets via solvent dissolution from microfluidic-generated precursor microdroplets.
    Seo M; Matsuura N
    Langmuir; 2014 Oct; 30(42):12465-73. PubMed ID: 25188556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic assembly of monodisperse, nanoparticle-incorporated perfluorocarbon microbubbles for medical imaging and therapy.
    Seo M; Gorelikov I; Williams R; Matsuura N
    Langmuir; 2010 Sep; 26(17):13855-60. PubMed ID: 20666507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deformation and breakup of micro- and nanoparticle stabilized droplets in microfluidic extensional flows.
    Mulligan MK; Rothstein JP
    Langmuir; 2011 Aug; 27(16):9760-8. PubMed ID: 21732665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monodisperse gas-filled microparticles from reactions in double emulsions.
    Duncanson WJ; Abbaspourrad A; Shum HC; Kim SH; Adams LL; Weitz DA
    Langmuir; 2012 May; 28(17):6742-5. PubMed ID: 22509783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monodisperse hydrogel microspheres by forced droplet formation in aqueous two-phase systems.
    Ziemecka I; van Steijn V; Koper GJ; Rosso M; Brizard AM; van Esch JH; Kreutzer MT
    Lab Chip; 2011 Feb; 11(4):620-4. PubMed ID: 21125099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predictive model for the size of bubbles and droplets created in microfluidic T-junctions.
    van Steijn V; Kleijn CR; Kreutzer MT
    Lab Chip; 2010 Oct; 10(19):2513-8. PubMed ID: 20617259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development in modeling submicron particle formation in two phases flow of solvent-supercritical antisolvent emulsion.
    Dukhin SS; Shen Y; Dave R; Pfeffer R
    Adv Colloid Interface Sci; 2007 Oct; 134-135():72-88. PubMed ID: 17568550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Liter-scale production of uniform gas bubbles via parallelization of flow-focusing generators.
    Jeong HH; Yadavali S; Issadore D; Lee D
    Lab Chip; 2017 Jul; 17(15):2667-2673. PubMed ID: 28702573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic emulsification and sorting assisted preparation of monodisperse chitosan microparticles.
    Yang CH; Lin YS; Huang KS; Huang YC; Wang EC; Jhong JY; Kuo CY
    Lab Chip; 2009 Jan; 9(1):145-50. PubMed ID: 19209347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting.
    Tan YC; Fisher JS; Lee AI; Cristini V; Lee AP
    Lab Chip; 2004 Aug; 4(4):292-8. PubMed ID: 15269794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of monodisperse alginate microbeads and in situ encapsulation of cell in microfluidic device.
    Choi CH; Jung JH; Rhee YW; Kim DP; Shim SE; Lee CS
    Biomed Microdevices; 2007 Dec; 9(6):855-62. PubMed ID: 17578667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-speed, clinical-scale microfluidic generation of stable phase-change droplets for gas embolotherapy.
    Bardin D; Martz TD; Sheeran PS; Shih R; Dayton PA; Lee AP
    Lab Chip; 2011 Dec; 11(23):3990-8. PubMed ID: 22011845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hands-off preparation of monodisperse emulsion droplets using a poly(dimethylsiloxane) microfluidic chip for droplet digital PCR.
    Tanaka H; Yamamoto S; Nakamura A; Nakashoji Y; Okura N; Nakamoto N; Tsukagoshi K; Hashimoto M
    Anal Chem; 2015 Apr; 87(8):4134-43. PubMed ID: 25822401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of bubbles and droplets in parallel, coupled flow-focusing geometries.
    Hashimoto M; Shevkoplyas SS; ZasoĊ„ska B; Szymborski T; Garstecki P; Whitesides GM
    Small; 2008 Oct; 4(10):1795-805. PubMed ID: 18819139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A study of the production and reversible stability of EGaIn liquid metal microspheres using flow focusing.
    Thelen J; Dickey MD; Ward T
    Lab Chip; 2012 Oct; 12(20):3961-7. PubMed ID: 22895484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Charged droplet dynamics in the submicrometer size range.
    Hogan CJ; Biswas P; Chen DR
    J Phys Chem B; 2009 Jan; 113(4):970-6. PubMed ID: 19159336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pillar-induced droplet merging in microfluidic circuits.
    Niu X; Gulati S; Edel JB; deMello AJ
    Lab Chip; 2008 Nov; 8(11):1837-41. PubMed ID: 18941682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expanding 3D geometry for enhanced on-chip microbubble production and single step formation of liposome modified microbubbles.
    Peyman SA; Abou-Saleh RH; McLaughlan JR; Ingram N; Johnson BR; Critchley K; Freear S; Evans JA; Markham AF; Coletta PL; Evans SD
    Lab Chip; 2012 Nov; 12(21):4544-52. PubMed ID: 22968592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.