BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 22700412)

  • 1. The use of fluorescent proteins for developing cancer-specific target imaging probes.
    McCann TE; Kosaka N; Choyke PL; Kobayashi H
    Methods Mol Biol; 2012; 872():191-204. PubMed ID: 22700412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo stable tumor-specific painting in various colors using dehalogenase-based protein-tag fluorescent ligands.
    Kosaka N; Ogawa M; Choyke PL; Karassina N; Corona C; McDougall M; Lynch DT; Hoyt CC; Levenson RM; Los GV; Kobayashi H
    Bioconjug Chem; 2009 Jul; 20(7):1367-74. PubMed ID: 19514716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multicolor in vivo targeted imaging to guide real-time surgery of HER2-positive micrometastases in a two-tumor coincident model of ovarian cancer.
    Longmire M; Kosaka N; Ogawa M; Choyke PL; Kobayashi H
    Cancer Sci; 2009 Jun; 100(6):1099-104. PubMed ID: 19302283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A self-quenched galactosamine-serum albumin-rhodamineX conjugate: a "smart" fluorescent molecular imaging probe synthesized with clinically applicable material for detecting peritoneal ovarian cancer metastases.
    Hama Y; Urano Y; Koyama Y; Gunn AJ; Choyke PL; Kobayashi H
    Clin Cancer Res; 2007 Nov; 13(21):6335-43. PubMed ID: 17975145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activatable organic near-infrared fluorescent probes based on a bacteriochlorin platform: synthesis and multicolor in vivo imaging with a single excitation.
    Harada T; Sano K; Sato K; Watanabe R; Yu Z; Hanaoka H; Nakajima T; Choyke PL; Ptaszek M; Kobayashi H
    Bioconjug Chem; 2014 Feb; 25(2):362-9. PubMed ID: 24450401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of four affibody-based near-infrared fluorescent probes for optical imaging of epidermal growth factor receptor positive tumors.
    Qi S; Miao Z; Liu H; Xu Y; Feng Y; Cheng Z
    Bioconjug Chem; 2012 Jun; 23(6):1149-56. PubMed ID: 22621238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual-modality molecular imaging using antibodies labeled with activatable fluorescence and a radionuclide for specific and quantitative targeted cancer detection.
    Ogawa M; Regino CA; Seidel J; Green MV; Xi W; Williams M; Kosaka N; Choyke PL; Kobayashi H
    Bioconjug Chem; 2009 Nov; 20(11):2177-84. PubMed ID: 19919110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo imaging of pancreatic cancer with fluorescent proteins in mouse models.
    Bouvet M; Hoffman RM
    Methods Mol Biol; 2012; 872():51-67. PubMed ID: 22700403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Galactosyl human serum albumin-NMP1 conjugate: a near infrared (NIR)-activatable fluorescence imaging agent to detect peritoneal ovarian cancer metastases.
    Alexander VM; Sano K; Yu Z; Nakajima T; Choyke PL; Ptaszek M; Kobayashi H
    Bioconjug Chem; 2012 Aug; 23(8):1671-9. PubMed ID: 22799539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorophore-quencher based activatable targeted optical probes for detecting in vivo cancer metastases.
    Ogawa M; Kosaka N; Longmire MR; Urano Y; Choyke PL; Kobayashi H
    Mol Pharm; 2009; 6(2):386-95. PubMed ID: 19718793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The cyan fluorescent protein nude mouse as a host for multicolor-coded imaging models of primary and metastatic tumor microenvironments.
    Suetsugu A; Hassanein MK; Reynoso J; Osawa Y; Nagaki M; Moriwaki H; Saji S; Bouvet M; Hoffman RM
    Anticancer Res; 2012 Jan; 32(1):31-8. PubMed ID: 22213285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo breast cancer characterization imaging using two monoclonal antibodies activatably labeled with near infrared fluorophores.
    Sano K; Mitsunaga M; Nakajima T; Choyke PL; Kobayashi H
    Breast Cancer Res; 2012; 14(2):R61. PubMed ID: 22510481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High sensitivity detection of cancer in vivo using a dual-controlled activation fluorescent imaging probe based on H-dimer formation and pH activation.
    Ogawa M; Kosaka N; Regino CA; Mitsunaga M; Choyke PL; Kobayashi H
    Mol Biosyst; 2010 May; 6(5):888-93. PubMed ID: 20567775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activatable imaging probes with amplified fluorescent signals.
    Lee S; Park K; Kim K; Choi K; Kwon IC
    Chem Commun (Camb); 2008 Sep; (36):4250-60. PubMed ID: 18802536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blood-based screening and light based imaging for the early detection and monitoring of ovarian cancer xenografts.
    Chaudhuri TR; Cao Z; Krasnykh VN; Stargel AV; Belousova N; Partridge EE; Zinn KR
    Technol Cancer Res Treat; 2003 Apr; 2(2):171-80. PubMed ID: 12680799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of the emission efficiency of four common green fluorescence dyes after internalization into cancer cells.
    Hama Y; Urano Y; Koyama Y; Bernardo M; Choyke PL; Kobayashi H
    Bioconjug Chem; 2006; 17(6):1426-31. PubMed ID: 17105220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescent LYVE-1 antibody to image dynamically lymphatic trafficking of cancer cells in vivo.
    McElroy M; Hayashi K; Garmy-Susini B; Kaushal S; Varner JA; Moossa AR; Hoffman RM; Bouvet M
    J Surg Res; 2009 Jan; 151(1):68-73. PubMed ID: 18599080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tumor imaging technologies in mouse models.
    Bouvet M; Hoffman RM
    Methods Mol Biol; 2015; 1267():321-48. PubMed ID: 25636477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and usage of fluorescent probes as nanoparticle contrast agents in detecting cancer.
    Murahari MS; Yergeri MC
    Curr Pharm Des; 2013; 19(25):4622-40. PubMed ID: 23363442
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.