BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 22700412)

  • 21. Non-Covalently Pre-Assembled High-Performance Near-Infrared Fluorescent Molecular Probes for Cancer Imaging.
    Shaw SK; Liu W; Gómez Durán CFA; Schreiber CL; Betancourt Mendiola ML; Zhai C; Roland FM; Padanilam SJ; Smith BD
    Chemistry; 2018 Sep; 24(52):13821-13829. PubMed ID: 30022552
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Site-Specific Fluorescent Labeling of Antibodies and Diabodies Using SpyTag/SpyCatcher System for In Vivo Optical Imaging.
    Alam MK; El-Sayed A; Barreto K; Bernhard W; Fonge H; Geyer CR
    Mol Imaging Biol; 2019 Feb; 21(1):54-66. PubMed ID: 29948640
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tumor imaging with multicolor fluorescent protein expression.
    Yamamoto N; Tsuchiya H; Hoffman RM
    Int J Clin Oncol; 2011 Apr; 16(2):84-91. PubMed ID: 21347627
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intraoperative imaging of metastatic lymph nodes using a fluorophore-conjugated antibody in a HER2/neu-expressing orthotopic breast cancer mouse model.
    Wu J; Ma R; Cao H; Wang Z; Jing C; Sun Y; Zhang Y; Yang Z; Hoffman RM; Tang J
    Anticancer Res; 2013 Feb; 33(2):419-24. PubMed ID: 23393332
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optimizing fresh specimen staining for rapid identification of tumor biomarkers during surgery.
    Barth CW; Schaefer JM; Rossi VM; Davis SC; Gibbs SL
    Theranostics; 2017; 7(19):4722-4734. PubMed ID: 29187899
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantitative comparison of the sensitivity of detection of fluorescent and bioluminescent reporters in animal models.
    Troy T; Jekic-McMullen D; Sambucetti L; Rice B
    Mol Imaging; 2004 Jan; 3(1):9-23. PubMed ID: 15142408
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Targeted optical fluorescence imaging of human ovarian adenocarcinoma using a galactosyl serum albumin-conjugated fluorophore.
    Gunn AJ; Hama Y; Koyama Y; Kohn EC; Choyke PL; Kobayashi H
    Cancer Sci; 2007 Nov; 98(11):1727-33. PubMed ID: 17784874
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Target-cancer-cell-specific activatable fluorescence imaging probes: rational design and in vivo applications.
    Kobayashi H; Choyke PL
    Acc Chem Res; 2011 Feb; 44(2):83-90. PubMed ID: 21062101
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optical antisense imaging of tumor with fluorescent DNA duplexes.
    Liu X; Wang Y; Nakamura K; Liu G; Dou S; Kubo A; Rusckowski M; Hnatowich DJ
    Bioconjug Chem; 2007; 18(6):1905-11. PubMed ID: 17939728
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Paired Agent Fluorescence Imaging of Cancer in a Living Mouse Using Preassembled Squaraine Molecular Probes with Emission Wavelengths of 690 and 830 nm.
    Schreiber CL; Zhai C; Dempsey JM; McGarraugh HH; Matthews BP; Christmann CR; Smith BD
    Bioconjug Chem; 2020 Feb; 31(2):214-223. PubMed ID: 31756298
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bright and stable near-infrared fluorescent protein for in vivo imaging.
    Filonov GS; Piatkevich KD; Ting LM; Zhang J; Kim K; Verkhusha VV
    Nat Biotechnol; 2011 Jul; 29(8):757-61. PubMed ID: 21765402
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lighting up tumors with receptor-specific optical molecular probes.
    Achilefu S
    Technol Cancer Res Treat; 2004 Aug; 3(4):393-409. PubMed ID: 15270591
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Based on lapatinib innovative near-infrared fluorescent probes targeting HER1/HER2 for in vivo tumors imaging.
    Li C; Lin Q; Hu F; Bao R; Cai H; Gu Y
    Biosens Bioelectron; 2022 Oct; 214():114503. PubMed ID: 35779413
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Two-photon probes for in vivo multicolor microscopy of the structure and signals of brain cells.
    Ricard C; Arroyo ED; He CX; Portera-Cailliau C; Lepousez G; Canepari M; Fiole D
    Brain Struct Funct; 2018 Sep; 223(7):3011-3043. PubMed ID: 29748872
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Selective molecular imaging of viable cancer cells with pH-activatable fluorescence probes.
    Urano Y; Asanuma D; Hama Y; Koyama Y; Barrett T; Kamiya M; Nagano T; Watanabe T; Hasegawa A; Choyke PL; Kobayashi H
    Nat Med; 2009 Jan; 15(1):104-9. PubMed ID: 19029979
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Catheter-based in vivo imaging of enzyme activity and gene expression: feasibility study in mice.
    Funovics MA; Weissleder R; Mahmood U
    Radiology; 2004 Jun; 231(3):659-66. PubMed ID: 15163807
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Shortwave infrared emitting multicolored nanoprobes for biomarker-specific cancer imaging in vivo.
    Kantamneni H; Barkund S; Donzanti M; Martin D; Zhao X; He S; Riman RE; Tan MC; Pierce MC; Roth CM; Ganapathy V; Moghe PV
    BMC Cancer; 2020 Nov; 20(1):1082. PubMed ID: 33172421
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dual-wavelength imaging of tumor progression by activatable and targeting near-infrared fluorescent probes in a bioluminescent breast cancer model.
    Xie BW; Mol IM; Keereweer S; van Beek ER; Que I; Snoeks TJ; Chan A; Kaijzel EL; Löwik CW
    PLoS One; 2012; 7(2):e31875. PubMed ID: 22348134
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Distinguished photons: increased contrast with multispectral in vivo fluorescence imaging.
    Mansfield JR; Hoyt CC; Miller PJ; Levenson RM
    Biotechniques; 2005 Dec; 39(6 Suppl):S33-7. PubMed ID: 20158502
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Photoconvertible fluorescent proteins: a versatile tool in zebrafish skeletal imaging.
    Bek JW; De Clercq A; De Saffel H; Soenens M; Huysseune A; Witten PE; Coucke PJ; Willaert A
    J Fish Biol; 2021 Apr; 98(4):1007-1017. PubMed ID: 32242924
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.