These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 22700537)

  • 21. Leg surface electromyography patterns in children with neuro-orthopedic disorders walking on a treadmill unassisted and assisted by a robot with and without encouragement.
    Aurich Schuler T; Müller R; van Hedel HJ
    J Neuroeng Rehabil; 2013 Jul; 10():78. PubMed ID: 23867005
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-Intensity Variable Stepping Training in Patients With Motor Incomplete Spinal Cord Injury: A Case Series.
    Holleran CL; Hennessey PW; Leddy AL; Mahtani GB; Brazg G; Schmit BD; Hornby TG
    J Neurol Phys Ther; 2018 Apr; 42(2):94-101. PubMed ID: 29547484
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of robotic-assisted treadmill training and chronic quipazine treatment on hindlimb stepping in spinally transected rats.
    de Leon RD; Acosta CN
    J Neurotrauma; 2006 Jul; 23(7):1147-63. PubMed ID: 16866627
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recruitment of spinal motor pools during voluntary movements versus stepping after human spinal cord injury.
    Maegele M; Müller S; Wernig A; Edgerton VR; Harkema SJ
    J Neurotrauma; 2002 Oct; 19(10):1217-29. PubMed ID: 12427330
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of EMG-biofeedback robotic-assisted body weight supported treadmill training on walking ability and cardiopulmonary function on people with subacute spinal cord injuries - a randomized controlled trial.
    Cheung EYY; Yu KKK; Kwan RLC; Ng CKM; Chau RMW; Cheing GLY
    BMC Neurol; 2019 Jun; 19(1):140. PubMed ID: 31234791
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced gait-related improvements after therapist- versus robotic-assisted locomotor training in subjects with chronic stroke: a randomized controlled study.
    Hornby TG; Campbell DD; Kahn JH; Demott T; Moore JL; Roth HR
    Stroke; 2008 Jun; 39(6):1786-92. PubMed ID: 18467648
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lower extremity kinematics during walking and elliptical training in individuals with and without traumatic brain injury.
    Buster T; Burnfield J; Taylor AP; Stergiou N
    J Neurol Phys Ther; 2013 Dec; 37(4):176-86. PubMed ID: 24189335
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Changes on EMG activation in healthy subjects and incomplete SCI patients following a robot-assisted locomotor training.
    Mazzoleni S; Boldrini E; Laschi C; Carrozza MC; Stampacchia G; Rossi B
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975467. PubMed ID: 22275665
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recumbent stepping has similar but simpler neural control compared to walking.
    Stoloff RH; Zehr EP; Ferris DP
    Exp Brain Res; 2007 Apr; 178(4):427-38. PubMed ID: 17072607
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Kinematic modelling of a robotic gait device for early rehabilitation of walking.
    Fang J; Gollee H; Galen S; Allan DB; Conway BA; Vuckovic A
    Proc Inst Mech Eng H; 2011 Dec; 225(12):1177-87. PubMed ID: 22320057
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Variability of Leg Kinematics during Overground Walking in Persons with Chronic Incomplete Spinal Cord Injury.
    Sohn WJ; Tan AQ; Hayes HB; Pochiraju S; Deffeyes J; Trumbower RD
    J Neurotrauma; 2018 Nov; 35(21):2519-2529. PubMed ID: 29648987
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Overground walking with a robotic exoskeleton elicits trunk muscle activity in people with high-thoracic motor-complete spinal cord injury.
    Alamro RA; Chisholm AE; Williams AMM; Carpenter MG; Lam T
    J Neuroeng Rehabil; 2018 Nov; 15(1):109. PubMed ID: 30458839
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Robotic resistance treadmill training improves locomotor function in human spinal cord injury: a pilot study.
    Wu M; Landry JM; Schmit BD; Hornby TG; Yen SC
    Arch Phys Med Rehabil; 2012 May; 93(5):782-9. PubMed ID: 22459697
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Locomotor training improves premotoneuronal control after chronic spinal cord injury.
    Knikou M; Mummidisetty CK
    J Neurophysiol; 2014 Jun; 111(11):2264-75. PubMed ID: 24598526
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Training for mobility with exoskeleton robot in spinal cord injury patients: a pilot study.
    Sale P; Russo EF; Scarton A; Calabrò RS; Masiero S; Filoni S
    Eur J Phys Rehabil Med; 2018 Oct; 54(5):745-751. PubMed ID: 29517187
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of the amount of body weight support on lower limb joints' kinematics during treadmill walking at different gait speeds: Reference data on healthy adults to define trajectories for robot assistance.
    Ferrarin M; Rabuffetti M; Geda E; Sirolli S; Marzegan A; Bruno V; Sacco K
    Proc Inst Mech Eng H; 2018 Jun; 232(6):619-627. PubMed ID: 29890931
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Trainer variability during step training after spinal cord injury: Implications for robotic gait-training device design.
    Galvez JA; Budovitch A; Harkema SJ; Reinkensmeyer DJ
    J Rehabil Res Dev; 2011; 48(2):147-60. PubMed ID: 21480089
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Treadmill training enhances the recovery of normal stepping patterns in spinal cord contused rats.
    Heng C; de Leon RD
    Exp Neurol; 2009 Mar; 216(1):139-47. PubMed ID: 19111541
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Alterations in muscle activation patterns during robotic-assisted walking.
    Hidler JM; Wall AE
    Clin Biomech (Bristol); 2005 Feb; 20(2):184-93. PubMed ID: 15621324
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Swing phase resistance enhances flexor muscle activity during treadmill locomotion in incomplete spinal cord injury.
    Lam T; Wirz M; Lünenburger L; Dietz V
    Neurorehabil Neural Repair; 2008; 22(5):438-46. PubMed ID: 18780879
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.