These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 22700688)

  • 1. Correlation between evolution of resistive switching and oxygen vacancy configuration in La₀.₅Ca₀.₅MnO₃ based memristive devices.
    Wang ZH; Yang Y; Gu L; Habermeier HU; Yu RC; Zhao TY; Sun JR; Shen BG
    Nanotechnology; 2012 Jul; 23(26):265202. PubMed ID: 22700688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resistive switching mechanisms in random access memory devices incorporating transition metal oxides: TiO2, NiO and Pr0.7Ca0.3MnO3.
    Magyari-Köpe B; Tendulkar M; Park SG; Lee HD; Nishi Y
    Nanotechnology; 2011 Jun; 22(25):254029. PubMed ID: 21572196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deterministic Role of Concentration Surplus of Cation Vacancy over Anion Vacancy in Bipolar Memristive NiO.
    Sun Z; Zhao Y; He M; Gu L; Ma C; Jin K; Zhao D; Luo N; Zhang Q; Wang N; Duan W; Nan CW
    ACS Appl Mater Interfaces; 2016 May; 8(18):11583-91. PubMed ID: 27096884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for a crucial role played by oxygen vacancies in LaMnO3 resistive switching memories.
    Xu ZT; Jin KJ; Gu L; Jin YL; Ge C; Wang C; Guo HZ; Lu HB; Zhao RQ; Yang GZ
    Small; 2012 Apr; 8(8):1279-84. PubMed ID: 22351297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ control of oxygen vacancies in TiO₂ by atomic layer deposition for resistive switching devices.
    Park SJ; Lee JP; Jang JS; Rhu H; Yu H; You BY; Kim CS; Kim KJ; Cho YJ; Baik S; Lee W
    Nanotechnology; 2013 Jul; 24(29):295202. PubMed ID: 23799660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct observation of oxygen vacancy-driven structural and resistive phase transitions in La
    Yao L; Inkinen S; van Dijken S
    Nat Commun; 2017 Feb; 8():14544. PubMed ID: 28230081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly stable resistive switching on monocrystalline ZnO.
    Shih A; Zhou W; Qiu J; Yang HJ; Chen S; Mi Z; Shih I
    Nanotechnology; 2010 Mar; 21(12):125201. PubMed ID: 20182012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Forming-less and Non-Volatile Resistive Switching in WO
    Won S; Lee SY; Park J; Seo H
    Sci Rep; 2017 Aug; 7(1):10186. PubMed ID: 28860572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of Oxygen Vacancy Configuration for Memristive Systems.
    Schmitt R; Spring J; Korobko R; Rupp JLM
    ACS Nano; 2017 Sep; 11(9):8881-8891. PubMed ID: 28850213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Topotactic Phase Transition Driving Memristive Behavior.
    Nallagatla VR; Heisig T; Baeumer C; Feyer V; Jugovac M; Zamborlini G; Schneider CM; Waser R; Kim M; Jung CU; Dittmann R
    Adv Mater; 2019 Oct; 31(40):e1903391. PubMed ID: 31441160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural, electrical and magnetic characterization of artificial ferromagnetic/superconducting (La(0.7)Ca(0.3)MnO(3)/YBa(2)Cu(3)O(7-x)) heterostructures.
    Piano S; De Santis A; Bobba F; Giubileo F; Longobardi M; Di Bartolomeo A; Polichetti M; Scarfato A; Zola D; Vecchione A; Cucolo AM
    J Phys Condens Matter; 2009 Jun; 21(25):254205. PubMed ID: 21828429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TiO2--a prototypical memristive material.
    Szot K; Rogala M; Speier W; Klusek Z; Besmehn A; Waser R
    Nanotechnology; 2011 Jun; 22(25):254001. PubMed ID: 21572202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ TEM imaging of defect dynamics under electrical bias in resistive switching rutile-TiO₂.
    Kamaladasa RJ; Sharma AA; Lai YT; Chen W; Salvador PA; Bain JA; Skowronski M; Picard YN
    Microsc Microanal; 2015 Feb; 21(1):140-53. PubMed ID: 25529361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoscale resistive switching devices: mechanisms and modeling.
    Yang Y; Lu W
    Nanoscale; 2013 Nov; 5(21):10076-92. PubMed ID: 24057010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative Observation of Threshold Defect Behavior in Memristive Devices with Operando X-ray Microscopy.
    Liu H; Dong Y; Cherukara MJ; Sasikumar K; Narayanan B; Cai Z; Lai B; Stan L; Hong S; Chan MKY; Sankaranarayanan SKRS; Zhou H; Fong DD
    ACS Nano; 2018 May; 12(5):4938-4945. PubMed ID: 29715007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM.
    Cooper D; Baeumer C; Bernier N; Marchewka A; La Torre C; Dunin-Borkowski RE; Menzel S; Waser R; Dittmann R
    Adv Mater; 2017 Jun; 29(23):. PubMed ID: 28417593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of electron/hole doping on the transport properties of lanthanum manganites LaMnO(3).
    Varshney D; Mansuri I; Kaurav N
    J Phys Condens Matter; 2007 Jun; 19(24):246211. PubMed ID: 21694054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication and resistive switching characteristics of high compact Ga-doped ZnO nanorod thin film devices.
    Yao IC; Lee DY; Tseng TY; Lin P
    Nanotechnology; 2012 Apr; 23(14):145201. PubMed ID: 22433578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polaronic pseudogap in the metallic phase of La(0.625)Ca(0.375)MnO(3) thin films.
    Singh UR; Chaudhuri S; Budhani RC; Gupta AK
    J Phys Condens Matter; 2009 Sep; 21(35):355001. PubMed ID: 21828622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct Observation of Structural Deformation Immunity for Understanding Oxygen Plasma Treatment-Enhanced Resistive Switching in HfO
    Wang D; Yan S; Chen Q; He Q; Xiao Y; Tang M; Zheng X
    Nanomaterials (Basel); 2019 Sep; 9(10):. PubMed ID: 31546659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.