BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 22700955)

  • 1. Mucus-penetrating nanoparticles for vaginal drug delivery protect against herpes simplex virus.
    Ensign LM; Tang BC; Wang YY; Tse TA; Hoen T; Cone R; Hanes J
    Sci Transl Med; 2012 Jun; 4(138):138ra79. PubMed ID: 22700955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoparticle-releasing nanofiber composites for enhanced in vivo vaginal retention.
    Krogstad EA; Ramanathan R; Nhan C; Kraft JC; Blakney AK; Cao S; Ho RJY; Woodrow KA
    Biomaterials; 2017 Nov; 144():1-16. PubMed ID: 28802690
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Farooq U; Mirza MA; Alshetaili A; Mohapatra S; Jain P; Hassan N; Iqbal Z; Ali A
    Nanoscale Adv; 2024 Jan; 6(2):648-668. PubMed ID: 38235090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced vaginal drug delivery through the use of hypotonic formulations that induce fluid uptake.
    Ensign LM; Hoen TE; Maisel K; Cone RA; Hanes JS
    Biomaterials; 2013 Sep; 34(28):6922-9. PubMed ID: 23769419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pH-Responsive Mucus-Penetrating Nanoparticles for Enhanced Cellular Internalization by Local Administration in Vaginal Tissue.
    Zhang Y; Li S; Loch K; Duncan GA; Kaler L; Pangeni R; Peng W; Wang S; Gong X; Xu Q
    ACS Macro Lett; 2023 Apr; 12(4):446-453. PubMed ID: 36951898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterogeneous polymer composite nanoparticles loaded in situ gel for controlled release intra-vaginal therapy of genital herpes.
    Ramyadevi D; Rajan KS; Vedhahari BN; Ruckmani K; Subramanian N
    Colloids Surf B Biointerfaces; 2016 Oct; 146():260-70. PubMed ID: 27351137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoparticles coated with high molecular weight PEG penetrate mucus and provide uniform vaginal and colorectal distribution in vivo.
    Maisel K; Reddy M; Xu Q; Chattopadhyay S; Cone R; Ensign LM; Hanes J
    Nanomedicine (Lond); 2016 Jun; 11(11):1337-43. PubMed ID: 27171816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mucus-Penetrating Particles and the Role of Ocular Mucus as a Barrier to Micro- and Nanosuspensions.
    Popov A
    J Ocul Pharmacol Ther; 2020; 36(6):366-375. PubMed ID: 32667250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vaginal Drug Delivery Systems to Control Microbe-Associated Infections.
    Xie L; Li Y; Liu Y; Chai Z; Ding Y; Shi L; Wang J
    ACS Appl Bio Mater; 2023 Sep; 6(9):3504-3515. PubMed ID: 36932958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of surface chemistry on nanoparticle interaction with gastrointestinal mucus and distribution in the gastrointestinal tract following oral and rectal administration in the mouse.
    Maisel K; Ensign L; Reddy M; Cone R; Hanes J
    J Control Release; 2015 Jan; 197():48-57. PubMed ID: 25449804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vaginal delivery of paclitaxel via nanoparticles with non-mucoadhesive surfaces suppresses cervical tumor growth.
    Yang M; Yu T; Wang YY; Lai SK; Zeng Q; Miao B; Tang BC; Simons BW; Ensign LM; Liu G; Chan KW; Juang CY; Mert O; Wood J; Fu J; McMahon MT; Wu TC; Hung CF; Hanes J
    Adv Healthc Mater; 2014 Jul; 3(7):1044-52. PubMed ID: 24339398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling of nanoparticle transport through the female reproductive tract for the treatment of infectious diseases.
    Sims LB; Miller HA; Halwes ME; Steinbach-Rankins JM; Frieboes HB
    Eur J Pharm Biopharm; 2019 May; 138():37-47. PubMed ID: 30195726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pretreatment of human cervicovaginal mucus with pluronic F127 enhances nanoparticle penetration without compromising mucus barrier properties to herpes simplex virus.
    Ensign LM; Lai SK; Wang YY; Yang M; Mert O; Hanes J; Cone R
    Biomacromolecules; 2014 Dec; 15(12):4403-9. PubMed ID: 25347518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degradable bioadhesive nanoparticles for prolonged intravaginal delivery and retention of elvitegravir.
    Mohideen M; Quijano E; Song E; Deng Y; Panse G; Zhang W; Clark MR; Saltzman WM
    Biomaterials; 2017 Nov; 144():144-154. PubMed ID: 28829952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vaginal drug delivery: strategies and concerns in polymeric nanoparticle development.
    Wong TW; Dhanawat M; Rathbone MJ
    Expert Opin Drug Deliv; 2014 Sep; 11(9):1419-34. PubMed ID: 24960192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spray-dried powders enhance vaginal siRNA delivery by potentially modulating the mucus molecular sieve structure.
    Wu N; Zhang X; Li F; Zhang T; Gan Y; Li J
    Int J Nanomedicine; 2015; 10():5383-96. PubMed ID: 26347257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mucus penetrating nanoparticles: biophysical tool and method of drug and gene delivery.
    Ensign LM; Schneider C; Suk JS; Cone R; Hanes J
    Adv Mater; 2012 Jul; 24(28):3887-94. PubMed ID: 22988559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acyclovir treatment of experimental genital herpes simplex virus infections. I. Topical therapy of type 2 and type 1 infections of mice.
    Kern ER; Richards JT; Overall JC; Glasgow LA
    Antiviral Res; 1983 Nov; 3(4):253-67. PubMed ID: 6320718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoparticle-based drug delivery to the vagina: a review.
    Ensign LM; Cone R; Hanes J
    J Control Release; 2014 Sep; 190():500-14. PubMed ID: 24830303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anti-PEG antibodies alter the mobility and biodistribution of densely PEGylated nanoparticles in mucus.
    Henry CE; Wang YY; Yang Q; Hoang T; Chattopadhyay S; Hoen T; Ensign LM; Nunn KL; Schroeder H; McCallen J; Moench T; Cone R; Roffler SR; Lai SK
    Acta Biomater; 2016 Oct; 43():61-70. PubMed ID: 27424083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.