These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
280 related articles for article (PubMed ID: 22701530)
1. A chaperone trap contributes to the onset of cystic fibrosis. Coppinger JA; Hutt DM; Razvi A; Koulov AV; Pankow S; Yates JR; Balch WE PLoS One; 2012; 7(5):e37682. PubMed ID: 22701530 [TBL] [Abstract][Full Text] [Related]
2. Human heat shock protein 105/110 kDa (Hsp105/110) regulates biogenesis and quality control of misfolded cystic fibrosis transmembrane conductance regulator at multiple levels. Saxena A; Banasavadi-Siddegowda YK; Fan Y; Bhattacharya S; Roy G; Giovannucci DR; Frizzell RA; Wang X J Biol Chem; 2012 Jun; 287(23):19158-70. PubMed ID: 22505710 [TBL] [Abstract][Full Text] [Related]
3. Deletion of Phe508 in the first nucleotide-binding domain of the cystic fibrosis transmembrane conductance regulator increases its affinity for the heat shock cognate 70 chaperone. Scott-Ward TS; Amaral MD FEBS J; 2009 Dec; 276(23):7097-109. PubMed ID: 19878303 [TBL] [Abstract][Full Text] [Related]
4. Chaperoning system: Intriguing target to modulate the expression of CFTR in cystic fibrosis. Scalia F; Culletta G; Barreca M; Caruso Bavisotto C; Bivacqua R; D'Amico G; Alberti G; Spanò V; Tutone M; Almerico AM; Cappello F; Montalbano A; Barraja P Eur J Med Chem; 2024 Nov; 278():116809. PubMed ID: 39226706 [TBL] [Abstract][Full Text] [Related]
5. Biological and structural basis for Aha1 regulation of Hsp90 ATPase activity in maintaining proteostasis in the human disease cystic fibrosis. Koulov AV; LaPointe P; Lu B; Razvi A; Coppinger J; Dong MQ; Matteson J; Laister R; Arrowsmith C; Yates JR; Balch WE Mol Biol Cell; 2010 Mar; 21(6):871-84. PubMed ID: 20089831 [TBL] [Abstract][Full Text] [Related]
8. Chaperones rescue the energetic landscape of mutant CFTR at single molecule and in cell. Bagdany M; Veit G; Fukuda R; Avramescu RG; Okiyoneda T; Baaklini I; Singh J; Sovak G; Xu H; Apaja PM; Sattin S; Beitel LK; Roldan A; Colombo G; Balch W; Young JC; Lukacs GL Nat Commun; 2017 Aug; 8(1):398. PubMed ID: 28855508 [TBL] [Abstract][Full Text] [Related]
9. ERp29 regulates DeltaF508 and wild-type cystic fibrosis transmembrane conductance regulator (CFTR) trafficking to the plasma membrane in cystic fibrosis (CF) and non-CF epithelial cells. Suaud L; Miller K; Alvey L; Yan W; Robay A; Kebler C; Kreindler JL; Guttentag S; Hubbard MJ; Rubenstein RC J Biol Chem; 2011 Jun; 286(24):21239-53. PubMed ID: 21525008 [TBL] [Abstract][Full Text] [Related]
10. Sodium 4-phenylbutyrate downregulates Hsc70: implications for intracellular trafficking of DeltaF508-CFTR. Rubenstein RC; Zeitlin PL Am J Physiol Cell Physiol; 2000 Feb; 278(2):C259-67. PubMed ID: 10666020 [TBL] [Abstract][Full Text] [Related]
11. The DeltaF508 cystic fibrosis mutation impairs domain-domain interactions and arrests post-translational folding of CFTR. Du K; Sharma M; Lukacs GL Nat Struct Mol Biol; 2005 Jan; 12(1):17-25. PubMed ID: 15619635 [TBL] [Abstract][Full Text] [Related]
12. The human DnaJ homologue (Hdj)-1/heat-shock protein (Hsp) 40 co-chaperone is required for the in vivo stabilization of the cystic fibrosis transmembrane conductance regulator by Hsp70. Farinha CM; Nogueira P; Mendes F; Penque D; Amaral MD Biochem J; 2002 Sep; 366(Pt 3):797-806. PubMed ID: 12069690 [TBL] [Abstract][Full Text] [Related]
13. FK506 binding protein 8 peptidylprolyl isomerase activity manages a late stage of cystic fibrosis transmembrane conductance regulator (CFTR) folding and stability. Hutt DM; Roth DM; Chalfant MA; Youker RT; Matteson J; Brodsky JL; Balch WE J Biol Chem; 2012 Jun; 287(26):21914-25. PubMed ID: 22474283 [TBL] [Abstract][Full Text] [Related]
14. Diminished self-chaperoning activity of the DeltaF508 mutant of CFTR results in protein misfolding. Serohijos AW; Hegedus T; Riordan JR; Dokholyan NV PLoS Comput Biol; 2008 Feb; 4(2):e1000008. PubMed ID: 18463704 [TBL] [Abstract][Full Text] [Related]
15. Binding screen for cystic fibrosis transmembrane conductance regulator correctors finds new chemical matter and yields insights into cystic fibrosis therapeutic strategy. Hall JD; Wang H; Byrnes LJ; Shanker S; Wang K; Efremov IV; Chong PA; Forman-Kay JD; Aulabaugh AE Protein Sci; 2016 Feb; 25(2):360-73. PubMed ID: 26444971 [TBL] [Abstract][Full Text] [Related]
16. Chaperone displacement from mutant cystic fibrosis transmembrane conductance regulator restores its function in human airway epithelia. Sun F; Mi Z; Condliffe SB; Bertrand CA; Gong X; Lu X; Zhang R; Latoche JD; Pilewski JM; Robbins PD; Frizzell RA FASEB J; 2008 Sep; 22(9):3255-63. PubMed ID: 18556464 [TBL] [Abstract][Full Text] [Related]
17. Silencing of the Hsp70-specific nucleotide-exchange factor BAG3 corrects the F508del-CFTR variant by restoring autophagy. Hutt DM; Mishra SK; Roth DM; Larsen MB; Angles F; Frizzell RA; Balch WE J Biol Chem; 2018 Aug; 293(35):13682-13695. PubMed ID: 29986884 [TBL] [Abstract][Full Text] [Related]
18. A small molecule that binds to an ATPase domain of Hsc70 promotes membrane trafficking of mutant cystic fibrosis transmembrane conductance regulator. Cho HJ; Gee HY; Baek KH; Ko SK; Park JM; Lee H; Kim ND; Lee MG; Shin I J Am Chem Soc; 2011 Dec; 133(50):20267-76. PubMed ID: 22074182 [TBL] [Abstract][Full Text] [Related]
19. Impact of the deltaF508 mutation in first nucleotide-binding domain of human cystic fibrosis transmembrane conductance regulator on domain folding and structure. Lewis HA; Zhao X; Wang C; Sauder JM; Rooney I; Noland BW; Lorimer D; Kearins MC; Conners K; Condon B; Maloney PC; Guggino WB; Hunt JF; Emtage S J Biol Chem; 2005 Jan; 280(2):1346-53. PubMed ID: 15528182 [TBL] [Abstract][Full Text] [Related]
20. Hsp70 and DNAJA2 limit CFTR levels through degradation. Kim Chiaw P; Hantouche C; Wong MJH; Matthes E; Robert R; Hanrahan JW; Shrier A; Young JC PLoS One; 2019; 14(8):e0220984. PubMed ID: 31408507 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]