These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 22701637)

  • 1. Statistical optimization of process variables for antibiotic activity of Xenorhabdus bovienii.
    Fang XL; Han LR; Cao XQ; Zhu MX; Zhang X; Wang YH
    PLoS One; 2012; 7(6):e38421. PubMed ID: 22701637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvement of antibiotic activity of Xenorhabdus bovienii by medium optimization using response surface methodology.
    Wang Y; Fang X; An F; Wang G; Zhang X
    Microb Cell Fact; 2011 Nov; 10():98. PubMed ID: 22082189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of fermentation condition for antibiotic production by Xenorhabdus nematophila with response surface methodology.
    Wang YH; Feng JT; Zhang Q; Zhang X
    J Appl Microbiol; 2008 Mar; 104(3):735-44. PubMed ID: 17953686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing the yield of Xenocoumacin 1 in Xenorhabdus nematophila YL001 by optimizing the fermentation process.
    Han Y; Zhang S; Wang Y; Gao J; Han J; Yan Z; Ta Y; Wang Y
    Sci Rep; 2024 Jun; 14(1):13506. PubMed ID: 38866882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced antibiotic activity of Xenorhabdus nematophila by medium optimization.
    Wang YH; Li YP; Zhang Q; Zhang X
    Bioresour Technol; 2008 Apr; 99(6):1708-15. PubMed ID: 17531470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. R-type bacteriocins of
    Thappeta KRV; Ciezki K; Morales-Soto N; Wesener S; Goodrich-Blair H; Stock SP; Forst S
    Microbiology (Reading); 2020 Nov; 166(11):1074-1087. PubMed ID: 33064635
    [No Abstract]   [Full Text] [Related]  

  • 7. Regulation of antimicrobial activity and xenocoumacins biosynthesis by pH in Xenorhabdus nematophila.
    Guo S; Zhang S; Fang X; Liu Q; Gao J; Bilal M; Wang Y; Zhang X
    Microb Cell Fact; 2017 Nov; 16(1):203. PubMed ID: 29141647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Manipulation of pH shift to enhance the growth and antibiotic activity of Xenorhabdus nematophila.
    Wang Y; Fang X; Cheng Y; Zhang X
    J Biomed Biotechnol; 2011; 2011():672369. PubMed ID: 21660139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phenotypic characterization of the Xenorhabdus bacterial symbiont of a Texas strain of the entomopathogenic nematode Steinernema riobrave, and characterization of the Xenorhabdus bovienii bacterial symbiont of a Newfoundland strain of Steinernema feltiae.
    He H; Gordon R; Gow JA
    Can J Microbiol; 2000 Jul; 46(7):618-22. PubMed ID: 10932355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antibiotic activity of Xenorhabdus spp., bacteria symbiotically associated with insect pathogenic nematodes of the families Heterorhabditidae and Steinernematidae.
    Akhurst RJ
    J Gen Microbiol; 1982 Dec; 128(12):3061-5. PubMed ID: 7183749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of cpxR on the growth characteristics and antibiotic production of Xenorhabdus nematophila.
    Guo S; Wang Z; Liu B; Gao J; Fang X; Tang Q; Bilal M; Wang Y; Zhang X
    Microb Biotechnol; 2019 May; 12(3):447-458. PubMed ID: 30623566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spiteful interactions between sympatric natural isolates of Xenorhabdus bovienii benefit kin and reduce virulence.
    Bashey F; Young SK; Hawlena H; Lively CM
    J Evol Biol; 2012 Mar; 25(3):431-7. PubMed ID: 22221661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spiteful Interactions in a natural population of the bacterium Xenorhabdus bovienii.
    Hawlena H; Bashey F; Mendes-Soares H; Lively CM
    Am Nat; 2010 Mar; 175(3):374-81. PubMed ID: 20095826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and biosynthesis of deoxy-polyamine in Xenorhabdus bovienii.
    Wenski SL; Berghaus N; Keller N; Bode HB
    J Ind Microbiol Biotechnol; 2021 Jun; 48(3-4):. PubMed ID: 33693901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acaricidal effect of cell-free supernatants from Xenorhabdus and Photorhabdus bacteria against Tetranychus urticae (Acari: Tetranychidae).
    Eroglu C; Cimen H; Ulug D; Karagoz M; Hazir S; Cakmak I
    J Invertebr Pathol; 2019 Jan; 160():61-66. PubMed ID: 30528928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of Response Surface Methodology for Optimization of Extracellular Glucoamylase Production by Candida guilliermondii.
    Mohamed L; Kettani YE; Ali A; Mohamed E; Mohamed J
    Pak J Biol Sci; 2017; 20(2):100-107. PubMed ID: 29023000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular and phenotypic characterization of Xenorhabdus bovienii symbiotically associated with Steinernema silvaticum.
    Kazimierczak W; Sajnaga E; Skowronek M; Kreft AM; Skrzypek HW; Wiater A
    Arch Microbiol; 2016 Dec; 198(10):995-1003. PubMed ID: 27342112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth-mediated variations in fatty acids of Xenorhabdus sp.
    Abu Hatab MA; Gaugler R
    J Appl Microbiol; 1997 Mar; 82(3):351-8. PubMed ID: 12455899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Life history trait analysis of the entomopathogenic nematode Steinernema feltiae provides the basis for prediction of dauer juvenile yields in monoxenic liquid culture.
    Addis T; Teshome A; Strauch O; Ehlers RU
    Appl Microbiol Biotechnol; 2016 May; 100(10):4357-66. PubMed ID: 26701359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Xenorhabdus bovienii CS03, the bacterial symbiont of the entomopathogenic nematode Steinernema weiseri, is a non-virulent strain against lepidopteran insects.
    Bisch G; Pagès S; McMullen JG; Stock SP; Duvic B; Givaudan A; Gaudriault S
    J Invertebr Pathol; 2015 Jan; 124():15-22. PubMed ID: 25315609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.