BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 22701727)

  • 1. Fibril-forming motifs are essential and sufficient for the fibrillization of human Tau.
    Meng SR; Zhu YZ; Guo T; Liu XL; Chen J; Liang Y
    PLoS One; 2012; 7(6):e38903. PubMed ID: 22701727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequence-dependent abnormal aggregation of human Tau fragment in an inducible cell model.
    Liu XL; Hu JY; Hu MY; Zhang Y; Hong ZY; Cheng XQ; Chen J; Pang DW; Liang Y
    Biochim Biophys Acta; 2015 Aug; 1852(8):1561-73. PubMed ID: 25912737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The contrasting effect of macromolecular crowding on amyloid fibril formation.
    Ma Q; Fan JB; Zhou Z; Zhou BR; Meng SR; Hu JY; Chen J; Liang Y
    PLoS One; 2012; 7(4):e36288. PubMed ID: 22558423
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of two VQIXXK motifs for tau fibrillization in vitro.
    Li W; Lee VM
    Biochemistry; 2006 Dec; 45(51):15692-701. PubMed ID: 17176091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein disulfide isomerase interacts with tau protein and inhibits its fibrillization.
    Xu LR; Liu XL; Chen J; Liang Y
    PLoS One; 2013; 8(10):e76657. PubMed ID: 24098548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of tau amyloid formation and disruption of its preformed fibrils by Naphthoquinone-Dopamine hybrid.
    Paul A; Viswanathan GK; Huber A; Arad E; Engel H; Jelinek R; Gazit E; Segal D
    FEBS J; 2021 Jul; 288(14):4267-4290. PubMed ID: 33523571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How does domain replacement affect fibril formation of the rabbit/human prion proteins.
    Yan X; Huang JJ; Zhou Z; Chen J; Liang Y
    PLoS One; 2014; 9(11):e113238. PubMed ID: 25401497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crowded cell-like environment accelerates the nucleation step of amyloidogenic protein misfolding.
    Zhou Z; Fan JB; Zhu HL; Shewmaker F; Yan X; Chen X; Chen J; Xiao GF; Guo L; Liang Y
    J Biol Chem; 2009 Oct; 284(44):30148-58. PubMed ID: 19748895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fibrillization of human tau is accelerated by exposure to lead via interaction with His-330 and His-362.
    Zhu HL; Meng SR; Fan JB; Chen J; Liang Y
    PLoS One; 2011; 6(9):e25020. PubMed ID: 21966400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resonance Raman spectroscopic measurements delineate the structural changes that occur during tau fibril formation.
    Ramachandran G; Milán-Garcés EA; Udgaonkar JB; Puranik M
    Biochemistry; 2014 Oct; 53(41):6550-65. PubMed ID: 25284680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fibrils formed in vitro from alpha-synuclein and two mutant forms linked to Parkinson's disease are typical amyloid.
    Conway KA; Harper JD; Lansbury PT
    Biochemistry; 2000 Mar; 39(10):2552-63. PubMed ID: 10704204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbamylation promotes amyloidogenesis and induces structural changes in Tau-core hexapeptide fibrils.
    Guru KrishnaKumar V; Baweja L; Ralhan K; Gupta S
    Biochim Biophys Acta Gen Subj; 2018 Dec; 1862(12):2590-2604. PubMed ID: 30071272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Terminal Capping of an Amyloidogenic Tau Fragment Modulates Its Fibrillation Propensity.
    Arya S; Ganguly P; Arsiccio A; Claud SL; Trapp B; Schonfeld GE; Liu X; Lazar Cantrell K; Shea JE; Bowers MT
    J Phys Chem B; 2020 Oct; 124(40):8772-8783. PubMed ID: 32816481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amyloidogenic Mutation Promotes Fibril Formation of the N-terminal Apolipoprotein A-I on Lipid Membranes.
    Mizuguchi C; Ogata F; Mikawa S; Tsuji K; Baba T; Shigenaga A; Shimanouchi T; Okuhira K; Otaka A; Saito H
    J Biol Chem; 2015 Aug; 290(34):20947-20959. PubMed ID: 26175149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amyloid fibril formation of alpha-synuclein is accelerated by preformed amyloid seeds of other proteins: implications for the mechanism of transmissible conformational diseases.
    Yagi H; Kusaka E; Hongo K; Mizobata T; Kawata Y
    J Biol Chem; 2005 Nov; 280(46):38609-16. PubMed ID: 16162499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cross-Linking Mass Spectrometry Analysis of Metastable Compact Structures in Intrinsically Disordered Proteins.
    Chen D; Joachimiak LA
    Methods Mol Biol; 2023; 2551():189-201. PubMed ID: 36310204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A radish seed antifungal peptide with a high amyloid fibril-forming propensity.
    Garvey M; Meehan S; Gras SL; Schirra HJ; Craik DJ; Van der Weerden NL; Anderson MA; Gerrard JA; Carver JA
    Biochim Biophys Acta; 2013 Aug; 1834(8):1615-23. PubMed ID: 23665069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Appraisal of role of the polyanionic inducer length on amyloid formation by 412-residue 1N4R Tau protein: A comparative study.
    Jangholi A; Ashrafi-Kooshk MR; Arab SS; Riazi G; Mokhtari F; Poorebrahim M; Mahdiuni H; Kurganov BI; Moosavi-Movahedi AA; Khodarahmi R
    Arch Biochem Biophys; 2016 Nov; 609():1-19. PubMed ID: 27638048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformation-Specific Association of Prion Protein Amyloid Aggregates with Tau Protein Monomers.
    Ziaunys M; Mikalauskaite K; Krasauskas L; Smirnovas V
    Int J Mol Sci; 2023 May; 24(11):. PubMed ID: 37298227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Positional effects of phosphorylation on the stability and morphology of tau-related amyloid fibrils.
    Inoue M; Konno T; Tainaka K; Nakata E; Yoshida HO; Morii T
    Biochemistry; 2012 Feb; 51(7):1396-406. PubMed ID: 22304362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.