BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 22701727)

  • 21. α-Synuclein Fibrils Exhibit Gain of Toxic Function, Promoting Tau Aggregation and Inhibiting Microtubule Assembly.
    Oikawa T; Nonaka T; Terada M; Tamaoka A; Hisanaga S; Hasegawa M
    J Biol Chem; 2016 Jul; 291(29):15046-56. PubMed ID: 27226637
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phospholipid interaction induces molecular-level polymorphism in apolipoprotein C-II amyloid fibrils via alternative assembly pathways.
    Griffin MD; Mok ML; Wilson LM; Pham CL; Waddington LJ; Perugini MA; Howlett GJ
    J Mol Biol; 2008 Jan; 375(1):240-56. PubMed ID: 18005990
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Distinct Mechanisms Determine α-Synuclein Fibril Morphology during Growth and Maturation.
    Sidhu A; Segers-Nolten I; Raussens V; Claessens MM; Subramaniam V
    ACS Chem Neurosci; 2017 Mar; 8(3):538-547. PubMed ID: 28292187
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fracture and Growth Are Competing Forces Determining the Fate of Conformers in Tau Fibril Populations.
    Meyer V; Holden MR; Weismiller HA; Eaton GR; Eaton SS; Margittai M
    J Biol Chem; 2016 Jun; 291(23):12271-81. PubMed ID: 27080260
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Benzimidazole-based fluorophores for the detection of amyloid fibrils with higher sensitivity than Thioflavin-T.
    Pravin N; Kumar R; Tripathi S; Kumar P; Mohite GM; Navalkar A; Panigrahi R; Singh N; Gadhe LG; Manchanda S; Shimozawa M; Nilsson P; Johansson J; Kumar A; Maji SK; Shanmugam M
    J Neurochem; 2021 Mar; 156(6):1003-1019. PubMed ID: 32750740
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tau local structure shields an amyloid-forming motif and controls aggregation propensity.
    Chen D; Drombosky KW; Hou Z; Sari L; Kashmer OM; Ryder BD; Perez VA; Woodard DR; Lin MM; Diamond MI; Joachimiak LA
    Nat Commun; 2019 Jun; 10(1):2493. PubMed ID: 31175300
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tau assembly: the dominant role of PHF6 (VQIVYK) in microtubule binding region repeat R3.
    Ganguly P; Do TD; Larini L; LaPointe NE; Sercel AJ; Shade MF; Feinstein SC; Bowers MT; Shea JE
    J Phys Chem B; 2015 Apr; 119(13):4582-93. PubMed ID: 25775228
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A peptide motif consisting of glycine, alanine, and valine is required for the fibrillization and cytotoxicity of human alpha-synuclein.
    Du HN; Tang L; Luo XY; Li HT; Hu J; Zhou JW; Hu HY
    Biochemistry; 2003 Jul; 42(29):8870-8. PubMed ID: 12873148
    [TBL] [Abstract][Full Text] [Related]  

  • 29. MAP2 caps tau fibrils and inhibits aggregation.
    Holden MR; Krzesinski BJ; Weismiller HA; Shady JR; Margittai M
    J Biol Chem; 2023 Jul; 299(7):104891. PubMed ID: 37286038
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prediction of nucleating sequences from amyloidogenic propensities of tau-related peptides.
    Rojas Quijano FA; Morrow D; Wise BM; Brancia FL; Goux WJ
    Biochemistry; 2006 Apr; 45(14):4638-52. PubMed ID: 16584199
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of N-terminal familial mutations in prion protein fibrillization and prion amyloid propagation in vitro.
    Jones EM; Surewicz K; Surewicz WK
    J Biol Chem; 2006 Mar; 281(12):8190-6. PubMed ID: 16443601
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Amyloidogenic cross-seeding of Tau protein: Transient emergence of structural variants of fibrils.
    Nizynski B; Nieznanska H; Dec R; Boyko S; Dzwolak W; Nieznanski K
    PLoS One; 2018; 13(7):e0201182. PubMed ID: 30024984
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Investigation of a peptide responsible for amyloid fibril formation of beta 2-microglobulin by achromobacter protease I.
    Kozhukh GV; Hagihara Y; Kawakami T; Hasegawa K; Naiki H; Goto Y
    J Biol Chem; 2002 Jan; 277(2):1310-5. PubMed ID: 11687582
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Designed hairpin peptides interfere with amyloidogenesis pathways: fibril formation and cytotoxicity inhibition, interception of the preamyloid state.
    Huggins KN; Bisaglia M; Bubacco L; Tatarek-Nossol M; Kapurniotu A; Andersen NH
    Biochemistry; 2011 Sep; 50(38):8202-12. PubMed ID: 21848289
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effects of aggregation-inducing motifs on amyloid formation of model proteins related to neurodegenerative diseases.
    Tanaka M; Machida Y; Nishikawa Y; Akagi T; Morishima I; Hashikawa T; Fujisawa T; Nukina N
    Biochemistry; 2002 Aug; 41(32):10277-86. PubMed ID: 12162743
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Amyloid fibril formation by bovine milk alpha s2-casein occurs under physiological conditions yet is prevented by its natural counterpart, alpha s1-casein.
    Thorn DC; Ecroyd H; Sunde M; Poon S; Carver JA
    Biochemistry; 2008 Mar; 47(12):3926-36. PubMed ID: 18302322
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantitative characterization of heparin binding to Tau protein: implication for inducer-mediated Tau filament formation.
    Zhu HL; Fernández C; Fan JB; Shewmaker F; Chen J; Minton AP; Liang Y
    J Biol Chem; 2010 Feb; 285(6):3592-3599. PubMed ID: 19959468
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Short protein segments can drive a non-fibrillizing protein into the amyloid state.
    Teng PK; Eisenberg D
    Protein Eng Des Sel; 2009 Aug; 22(8):531-6. PubMed ID: 19602569
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fibrils with parallel in-register structure constitute a major class of amyloid fibrils: molecular insights from electron paramagnetic resonance spectroscopy.
    Margittai M; Langen R
    Q Rev Biophys; 2008; 41(3-4):265-97. PubMed ID: 19079806
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Amyloidogenesis of Tau protein.
    Nizynski B; Dzwolak W; Nieznanski K
    Protein Sci; 2017 Nov; 26(11):2126-2150. PubMed ID: 28833749
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.