BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 22702193)

  • 1. Grapevine downy mildew control using reduced copper amounts in organic viticulture.
    La Torre A; Pompi V; Mandalà C; Cioffi C
    Commun Agric Appl Biol Sci; 2011; 76(4):727-35. PubMed ID: 22702193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of downy mildew on grapes in organic viticulture.
    La Torre A; Talocci S; Spera G; Valori R
    Commun Agric Appl Biol Sci; 2008; 73(2):169-78. PubMed ID: 19226754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organic viticulture: efficacy evaluation of different fungicides against Plasmopara viticola.
    Spera G; La Torre A; Alegi S
    Commun Agric Appl Biol Sci; 2003; 68(4 Pt B):837-47. PubMed ID: 15151322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. More years of field trials against Plasmopara viticola in organic viticolture.
    La Torre A; Spera G; Gianferro M; Scaglione M
    Commun Agric Appl Biol Sci; 2007; 72(4):901-8. PubMed ID: 18396827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Grapevine downy mildew control in organic farming.
    La Torre A; Spera G; Lolletti D
    Commun Agric Appl Biol Sci; 2005; 70(3):371-9. PubMed ID: 16637202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of plant protection products treatments against Plasmopara viticola.
    La Torre A; Gianferro M; Spera G
    Commun Agric Appl Biol Sci; 2008; 73(2):159-68. PubMed ID: 19226753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of different fungicide treatments on grape, must and wine quality.
    Lo Scalzo R; Fibiani M; Pietromarchi P; Mandalà C; La Torre A
    Commun Agric Appl Biol Sci; 2012; 77(3):151-61. PubMed ID: 23878969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Innovative Delivery of Cu(II) Ions by a Nanostructured Hydroxyapatite: Potential Application in Planta to Enhance the Sustainable Control of
    Battiston E; Antonielli L; Di Marco S; Fontaine F; Mugnai L
    Phytopathology; 2019 May; 109(5):748-759. PubMed ID: 30522386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Natural products alone or with copper vs. grape downy mildew: efficacy, costs, Cu impact.
    La Torre A; Pompi V; Coramusi A
    Commun Agric Appl Biol Sci; 2010; 75(4):725-32. PubMed ID: 21534483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lysobacter capsici AZ78 can be combined with copper to effectively control Plasmopara viticola on grapevine.
    Puopolo G; Giovannini O; Pertot I
    Microbiol Res; 2014; 169(7-8):633-42. PubMed ID: 24140153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of climate change on infection of grapevine by downy and powdery mildew under controlled environment.
    Pugliese M; Gullino ML; Garibaldi A
    Commun Agric Appl Biol Sci; 2011; 76(4):579-82. PubMed ID: 22702176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vineyard evaluation of stilbenoid-rich grape cane extracts against downy mildew: a large-scale study.
    Billet K; Delanoue G; Arnault I; Besseau S; Oudin A; Courdavault V; Marchand PA; Giglioli-Guivarc'h N; Guérin L; Lanoue A
    Pest Manag Sci; 2019 May; 75(5):1252-1257. PubMed ID: 30324644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of spent mushroom substrate applied to vineyard soil on the behaviour of copper-based fungicide residues.
    Herrero-Hernández E; Andrades MS; Rodríguez-Cruz MS; Sánchez-Martín MJ
    J Environ Manage; 2011 Jul; 92(7):1849-57. PubMed ID: 21458912
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Koledenkova K; Esmaeel Q; Jacquard C; Nowak J; Clément C; Ait Barka E
    Front Microbiol; 2022; 13():889472. PubMed ID: 35633680
    [No Abstract]   [Full Text] [Related]  

  • 15. Rationalization of pesticide treatments against powdery mildew of grape.
    Spera G; La Torre A; Gianferro M; Bugliosi R
    Commun Agric Appl Biol Sci; 2007; 72(2):315-9. PubMed ID: 18399458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A two years study results in the use of artificial neural networks to forecast Plasmopara viticola infection in viticulture.
    Bugliosi R; Spera G; La Torre A; Campoli L; Gianferro M; Talocci S
    Commun Agric Appl Biol Sci; 2007; 72(2):321-5. PubMed ID: 18399459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A semi-automatic non-destructive method to quantify grapevine downy mildew sporulation.
    Peressotti E; Duchêne E; Merdinoglu D; Mestre P
    J Microbiol Methods; 2011 Feb; 84(2):265-71. PubMed ID: 21167874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monitoring of QoI fungicide resistance in Plasmopara viticola populations in Japan.
    Furuya S; Mochizuki M; Saito S; Kobayashi H; Takayanagi T; Suzuki S
    Pest Manag Sci; 2010 Nov; 66(11):1268-72. PubMed ID: 20799246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of Chitosan and Other Natural Compounds Alone or in Different Strategies with Copper Hydroxide for Control of Grapevine Downy Mildew.
    Romanazzi G; Mancini V; Foglia R; Marcolini D; Kavari M; Piancatelli S
    Plant Dis; 2021 Oct; 105(10):3261-3268. PubMed ID: 33206016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trichoderma species isolated from grapevine with tolerance towards common copper fungicides used in viticulture for plant protection.
    Küpper V; Steiner U; Kortekamp A
    Pest Manag Sci; 2022 Aug; 78(8):3266-3276. PubMed ID: 35524976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.