These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 22703279)

  • 1. RNA interference trigger variants: getting the most out of RNA for RNA interference-based therapeutics.
    Snead NM; Rossi JJ
    Nucleic Acid Ther; 2012 Jun; 22(3):139-46. PubMed ID: 22703279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Harnessing RNA interference to develop neonatal therapies: from Nobel Prize winning discovery to proof of concept clinical trials.
    DeVincenzo JP
    Early Hum Dev; 2009 Oct; 85(10 Suppl):S31-5. PubMed ID: 19833462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNAi therapeutics: an update on delivery.
    Nguyen T; Menocal EM; Harborth J; Fruehauf JH
    Curr Opin Mol Ther; 2008 Apr; 10(2):158-67. PubMed ID: 18386228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of RNA interference-based therapeutics and application of multi-target small interfering RNAs.
    Li T; Wu M; Zhu YY; Chen J; Chen L
    Nucleic Acid Ther; 2014 Aug; 24(4):302-12. PubMed ID: 24796432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA interference in vivo: toward synthetic small inhibitory RNA-based therapeutics.
    de Fougerolles A; Manoharan M; Meyers R; Vornlocher HP
    Methods Enzymol; 2005; 392():278-96. PubMed ID: 15644187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNAi-Based Therapeutics and Novel RNA Bioengineering Technologies.
    Traber GM; Yu AM
    J Pharmacol Exp Ther; 2023 Jan; 384(1):133-154. PubMed ID: 35680378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amide-Modified RNA: Using Protein Backbone to Modulate Function of Short Interfering RNAs.
    Kotikam V; Rozners E
    Acc Chem Res; 2020 Sep; 53(9):1782-1790. PubMed ID: 32658452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyethylenimines for RNAi-mediated gene targeting in vivo and siRNA delivery to the lung.
    Günther M; Lipka J; Malek A; Gutsch D; Kreyling W; Aigner A
    Eur J Pharm Biopharm; 2011 Apr; 77(3):438-49. PubMed ID: 21093588
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Small-interfering RNAs (siRNAs) as a promising tool for ocular therapy.
    Guzman-Aranguez A; Loma P; Pintor J
    Br J Pharmacol; 2013 Oct; 170(4):730-47. PubMed ID: 23937539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Therapeutic face of RNAi: in vivo challenges.
    Borna H; Imani S; Iman M; Azimzadeh Jamalkandi S
    Expert Opin Biol Ther; 2015 Feb; 15(2):269-85. PubMed ID: 25399911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNAi-based drug discovery and its application to therapeutics.
    Hokaiwado N; Takeshita F; Banas A; Ochiya T
    IDrugs; 2008 Apr; 11(4):274-8. PubMed ID: 18379962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNA interference: the molecular immune system.
    Bagasra O; Prilliman KR
    J Mol Histol; 2004 Aug; 35(6):545-53. PubMed ID: 15614608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cutaneous short-interfering RNA therapy.
    Geusens B; Sanders N; Prow T; Van Gele M; Lambert J
    Expert Opin Drug Deliv; 2009 Dec; 6(12):1333-49. PubMed ID: 19941411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Poliovirus escape from RNA interference: short interfering RNA-target recognition and implications for therapeutic approaches.
    Gitlin L; Stone JK; Andino R
    J Virol; 2005 Jan; 79(2):1027-35. PubMed ID: 15613331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applications of RNA interference: current state and prospects for siRNA-based strategies in vivo.
    Aigner A
    Appl Microbiol Biotechnol; 2007 Aug; 76(1):9-21. PubMed ID: 17457539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA interference strategies as therapy for respiratory viral infections.
    DeVincenzo JP
    Pediatr Infect Dis J; 2008 Oct; 27(10 Suppl):S118-22. PubMed ID: 18820571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene silencing through RNA interference (RNAi) in vivo: strategies based on the direct application of siRNAs.
    Aigner A
    J Biotechnol; 2006 Jun; 124(1):12-25. PubMed ID: 16413079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Designing highly active siRNAs for therapeutic applications.
    Walton SP; Wu M; Gredell JA; Chan C
    FEBS J; 2010 Dec; 277(23):4806-13. PubMed ID: 21078115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring chemical modifications for siRNA therapeutics: a structural and functional outlook.
    Shukla S; Sumaria CS; Pradeepkumar PI
    ChemMedChem; 2010 Mar; 5(3):328-49. PubMed ID: 20043313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular mechanisms of RNA-triggered gene silencing machineries.
    Li Z; Rana TM
    Acc Chem Res; 2012 Jul; 45(7):1122-31. PubMed ID: 22304792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.