These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 22703279)

  • 21. RNA interference as a gene-specific approach for molecular medicine.
    Grünweller A; Hartmann RK
    Curr Med Chem; 2005; 12(26):3143-61. PubMed ID: 16375707
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Preclinical and clinical development of siRNA-based therapeutics.
    Ozcan G; Ozpolat B; Coleman RL; Sood AK; Lopez-Berestein G
    Adv Drug Deliv Rev; 2015 Jun; 87():108-19. PubMed ID: 25666164
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Small interfering RNAs (siRNAs) in cancer therapy: a nano-based approach.
    Mahmoodi Chalbatani G; Dana H; Gharagouzloo E; Grijalvo S; Eritja R; Logsdon CD; Memari F; Miri SR; Rad MR; Marmari V
    Int J Nanomedicine; 2019; 14():3111-3128. PubMed ID: 31118626
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Vector-based delivery of siRNAs: in vitro and in vivo challenges.
    Walchli S; Sioud M
    Front Biosci; 2008 May; 13():3488-93. PubMed ID: 18508450
    [TBL] [Abstract][Full Text] [Related]  

  • 25. siRNA: Mechanism of action, challenges, and therapeutic approaches.
    Alshaer W; Zureigat H; Al Karaki A; Al-Kadash A; Gharaibeh L; Hatmal MM; Aljabali AAA; Awidi A
    Eur J Pharmacol; 2021 Aug; 905():174178. PubMed ID: 34044011
    [TBL] [Abstract][Full Text] [Related]  

  • 26. RNA interference and cancer therapy.
    Wang Z; Rao DD; Senzer N; Nemunaitis J
    Pharm Res; 2011 Dec; 28(12):2983-95. PubMed ID: 22009588
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gel-based application of siRNA to human epithelial cancer cells induces RNAi-dependent apoptosis.
    Jiang M; Rubbi CP; Milner J
    Oligonucleotides; 2004; 14(4):239-48. PubMed ID: 15665592
    [TBL] [Abstract][Full Text] [Related]  

  • 28. RNA interference therapeutics for cancer: challenges and opportunities (review).
    Bora RS; Gupta D; Mukkur TK; Saini KS
    Mol Med Rep; 2012 Jul; 6(1):9-15. PubMed ID: 22576734
    [TBL] [Abstract][Full Text] [Related]  

  • 29. RNA interference: from gene silencing to gene-specific therapeutics.
    Leung RK; Whittaker PA
    Pharmacol Ther; 2005 Aug; 107(2):222-39. PubMed ID: 15908010
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In vivo application of RNA interference: from functional genomics to therapeutics.
    Lu PY; Xie F; Woodle MC
    Adv Genet; 2005; 54():117-42. PubMed ID: 16096010
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genetic pharmacology: progresses in siRNA delivery and therapeutic applications.
    Scherman D; Rousseau A; Bigey P; Escriou V
    Gene Ther; 2017 Mar; 24(3):151-156. PubMed ID: 28121307
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Brain Targeting of siRNA via Intranasal Pathway.
    Mohanty C; Kundu P; Sahoo SK
    Curr Pharm Des; 2015; 21(31):4606-13. PubMed ID: 26486146
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nonviral in vivo delivery of therapeutic small interfering RNAs.
    Aigner A
    Curr Opin Mol Ther; 2007 Aug; 9(4):345-52. PubMed ID: 17694447
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prospects for the potential of RNA interference in the treatment of autoimmune diseases: Small interfering RNAs in the spotlight.
    Gorabi AM; Kiaie N; Aslani S; Jamialahmadi T; Johnston TP; Sahebkar A
    J Autoimmun; 2020 Nov; 114():102529. PubMed ID: 32782117
    [TBL] [Abstract][Full Text] [Related]  

  • 35. RNAi therapeutics: SNALPing siRNAs in vivo.
    Rossi JJ
    Gene Ther; 2006 Apr; 13(7):583-4. PubMed ID: 17526070
    [No Abstract]   [Full Text] [Related]  

  • 36. Assessment of In Vivo siRNA Delivery in Cancer Mouse Models.
    Hatakeyama H; Wu SY; Mangala LS; Lopez-Berestein G; Sood AK
    Methods Mol Biol; 2016; 1402():189-197. PubMed ID: 26721492
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Therapeutic potential of chemically modified siRNA: Recent trends.
    Selvam C; Mutisya D; Prakash S; Ranganna K; Thilagavathi R
    Chem Biol Drug Des; 2017 Nov; 90(5):665-678. PubMed ID: 28378934
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nanovehicle-based Small Interfering RNA (siRNA) Delivery for Therapeutic Purposes: A New Molecular Approach in Pharmacogenomics.
    Akhtari J; Tafazoli A; Mehrad-Majd H; Mahrooz A
    Curr Clin Pharmacol; 2018; 13(3):173-182. PubMed ID: 29992895
    [TBL] [Abstract][Full Text] [Related]  

  • 39. siRNA delivery systems for cancer treatment.
    Oh YK; Park TG
    Adv Drug Deliv Rev; 2009 Aug; 61(10):850-62. PubMed ID: 19422869
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Budding Alliance of Nanotechnology in RNA Interference Therapeutics.
    Kumawat A; Dapse P; Kumar N; Mishra DK; Maheshwari R; Bhattacharya P; Tekade RK
    Curr Pharm Des; 2018; 24(23):2632-2643. PubMed ID: 30084328
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.