These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 22703380)
1. Evaluation of RNA extraction methods and identification of putative reference genes for real-time quantitative polymerase chain reaction expression studies on olive (Olea europaea L.) fruits. Nonis A; Vezzaro A; Ruperti B J Agric Food Chem; 2012 Jul; 60(27):6855-65. PubMed ID: 22703380 [TBL] [Abstract][Full Text] [Related]
2. Olive phenolic compounds: metabolic and transcriptional profiling during fruit development. Alagna F; Mariotti R; Panara F; Caporali S; Urbani S; Veneziani G; Esposto S; Taticchi A; Rosati A; Rao R; Perrotta G; Servili M; Baldoni L BMC Plant Biol; 2012 Sep; 12():162. PubMed ID: 22963618 [TBL] [Abstract][Full Text] [Related]
3. Identification of miRNAs involved in fruit ripening by deep sequencing of Olea europaea L. transcriptome. Carbone F; Bruno L; Perrotta G; Bitonti MB; Muzzalupo I; Chiappetta A PLoS One; 2019; 14(8):e0221460. PubMed ID: 31437230 [TBL] [Abstract][Full Text] [Related]
4. Selection of reference genes for gene expression studies in virus-infected monocots using quantitative real-time PCR. Zhang K; Niu S; Di D; Shi L; Liu D; Cao X; Miao H; Wang X; Han C; Yu J; Li D; Zhang Y J Biotechnol; 2013 Oct; 168(1):7-14. PubMed ID: 23954326 [TBL] [Abstract][Full Text] [Related]
6. Phenol metabolism in the leaves of the olive tree (Olea europaea L.) cv. Picual, Verdial, Arbequina, and Frantoio during ripening. Ortega-García F; Peragón J J Agric Food Chem; 2010 Dec; 58(23):12440-8. PubMed ID: 21047129 [TBL] [Abstract][Full Text] [Related]
7. Establishment of a rapid, inexpensive protocol for extraction of high quality RNA from small amounts of strawberry plant tissues and other recalcitrant fruit crops. Christou A; Georgiadou EC; Filippou P; Manganaris GA; Fotopoulos V Gene; 2014 Mar; 537(1):169-73. PubMed ID: 24321691 [TBL] [Abstract][Full Text] [Related]
8. Molecular cloning, functional characterization and transcriptional regulation of a 9-lipoxygenase gene from olive. Padilla MN; Hernández ML; Sanz C; Martínez-Rivas JM Phytochemistry; 2012 Feb; 74():58-68. PubMed ID: 22169502 [TBL] [Abstract][Full Text] [Related]
9. A possible role for flowering locus T-encoding genes in interpreting environmental and internal cues affecting olive (Olea europaea L.) flower induction. Haberman A; Bakhshian O; Cerezo-Medina S; Paltiel J; Adler C; Ben-Ari G; Mercado JA; Pliego-Alfaro F; Lavee S; Samach A Plant Cell Environ; 2017 Aug; 40(8):1263-1280. PubMed ID: 28103403 [TBL] [Abstract][Full Text] [Related]
10. Identification and Characterization of the Iridoid Synthase Involved in Oleuropein Biosynthesis in Olive (Olea europaea) Fruits. Alagna F; Geu-Flores F; Kries H; Panara F; Baldoni L; O'Connor SE; Osbourn A J Biol Chem; 2016 Mar; 291(11):5542-5554. PubMed ID: 26709230 [TBL] [Abstract][Full Text] [Related]
11. OeMST2 encodes a monosaccharide transporter expressed throughout olive fruit maturation. Conde C; Agasse A; Silva P; Lemoine R; Delrot S; Tavares R; Gerós H Plant Cell Physiol; 2007 Sep; 48(9):1299-308. PubMed ID: 17660519 [TBL] [Abstract][Full Text] [Related]
12. Genome-wide identification and validation of new reference genes for transcript normalization in developmental and post-harvested fruits of Actinidia chinensis. Liu J; Huang S; Niu X; Chen D; Chen Q; Tian L; Xiao F; Liu Y Gene; 2018 Mar; 645():1-6. PubMed ID: 29242074 [TBL] [Abstract][Full Text] [Related]
13. Identification of putative genes for polyphenol biosynthesis in olive fruits and leaves using full-length transcriptome sequencing. Guodong R; Jianguo Z; Xiaoxia L; Ying L Food Chem; 2019 Dec; 300():125246. PubMed ID: 31357017 [TBL] [Abstract][Full Text] [Related]
14. 454 Pyrosequencing of Olive (Olea europaea L.) Transcriptome in Response to Salinity. Bazakos C; Manioudaki ME; Sarropoulou E; Spano T; Kalaitzis P PLoS One; 2015; 10(11):e0143000. PubMed ID: 26576008 [TBL] [Abstract][Full Text] [Related]
15. Time course of pentacyclic triterpenoids from fruits and leaves of olive tree (Olea europaea L.) cv. Picual and cv. Cornezuelo during ripening. Peragón J J Agric Food Chem; 2013 Jul; 61(27):6671-8. PubMed ID: 23768136 [TBL] [Abstract][Full Text] [Related]
16. Genome-Wide Identification, Evolutionary Patterns, and Expression Analysis of Rong S; Wu Z; Cheng Z; Zhang S; Liu H; Huang Q Genes (Basel); 2020 May; 11(5):. PubMed ID: 32380769 [TBL] [Abstract][Full Text] [Related]
17. Olive fruits infested with olive fly larvae respond with an ethylene burst and the emission of specific volatiles. Alagna F; Kallenbach M; Pompa A; De Marchis F; Rao R; Baldwin IT; Bonaventure G; Baldoni L J Integr Plant Biol; 2016 Apr; 58(4):413-25. PubMed ID: 25727685 [TBL] [Abstract][Full Text] [Related]
18. Comparative transcriptional profiling analysis of olive ripe-fruit pericarp and abscission zone tissues shows expression differences and distinct patterns of transcriptional regulation. Parra R; Paredes MA; Sanchez-Calle IM; Gomez-Jimenez MC BMC Genomics; 2013 Dec; 14(1):866. PubMed ID: 24320622 [TBL] [Abstract][Full Text] [Related]
19. Expression analysis identifies FAD2-2 as the olive oleate desaturase gene mainly responsible for the linoleic acid content in virgin olive oil. Hernández ML; Padilla MN; Mancha M; Martínez-Rivas JM J Agric Food Chem; 2009 Jul; 57(14):6199-206. PubMed ID: 19601663 [TBL] [Abstract][Full Text] [Related]
20. Transcriptome and Hormone Analyses Revealed Insights into Hormonal and Vesicle Trafficking Regulation among Briegas B; Corbacho J; Parra-Lobato MC; Paredes MA; Labrador J; Gallardo M; Gomez-Jimenez MC Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32650402 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]