These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 22703522)

  • 1. Graphene-antenna sandwich photodetector.
    Fang Z; Liu Z; Wang Y; Ajayan PM; Nordlander P; Halas NJ
    Nano Lett; 2012 Jul; 12(7):3808-13. PubMed ID: 22703522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polarization-insensitive graphene photodetectors enhanced by a broadband metamaterial absorber.
    Zou Q; Shen Y; Ou-Yang J; Zhang Y; Jin C
    Opt Express; 2021 Jul; 29(15):24255-24263. PubMed ID: 34614674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-responsivity mid-infrared graphene detectors with antenna-enhanced photocarrier generation and collection.
    Yao Y; Shankar R; Rauter P; Song Y; Kong J; Loncar M; Capasso F
    Nano Lett; 2014 Jul; 14(7):3749-54. PubMed ID: 24940849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic Absorption Enhancement and Equivalent Resonant Circuit Modeling of Tunable Graphene-Metal Hybrid Antenna.
    Ullah Z; Nawi I; Witjaksono G; Tansu N; Khattak MI; Junaid M; Siddiqui MA; Magsi SA
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32512718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact excitation and electron-hole multiplication in graphene and carbon nanotubes.
    Gabor NM
    Acc Chem Res; 2013 Jun; 46(6):1348-57. PubMed ID: 23369453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrathin Broadband Germanium-Graphene Hybrid Photodetector with High Performance.
    Yang F; Cong H; Yu K; Zhou L; Wang N; Liu Z; Li C; Wang Q; Cheng B
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):13422-13429. PubMed ID: 28361534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photocurrent mapping of near-field optical antenna resonances.
    Barnard ES; Pala RA; Brongersma ML
    Nat Nanotechnol; 2011 Aug; 6(9):588-93. PubMed ID: 21857687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmon-exciton interaction strongly increases the efficiency of a quantum dot-based near-infrared photodetector operating in the two-photon absorption mode under normal conditions.
    Krivenkov V; Samokhvalov P; Vasil'evskii IS; Kargin NI; Nabiev I
    Nanoscale; 2021 Dec; 13(47):19929-19935. PubMed ID: 34812464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photogating in the Graphene-Dye-Graphene Sandwich Heterostructure.
    Lee Y; Kim H; Kim S; Whang D; Cho JH
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23474-23481. PubMed ID: 31136704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transparent, broadband, flexible, and bifacial-operable photodetectors containing a large-area graphene-gold oxide heterojunction.
    Liu YL; Yu CC; Lin KT; Yang TC; Wang EY; Chen HL; Chen LC; Chen KH
    ACS Nano; 2015 May; 9(5):5093-103. PubMed ID: 25927392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmon Enhanced Internal Photoemission in Antenna-Spacer-Mirror Based Au/TiO₂ Nanostructures.
    Fang Y; Jiao Y; Xiong K; Ogier R; Yang ZJ; Gao S; Dahlin AB; Käll M
    Nano Lett; 2015 Jun; 15(6):4059-65. PubMed ID: 25938263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photovoltaic Effect and Evidence of Carrier Multiplication in Graphene Vertical Homojunctions with Asymmetrical Metal Contacts.
    Chen JJ; Wang Q; Meng J; Ke X; Van Tendeloo G; Bie YQ; Liu J; Liu K; Liao ZM; Sun D; Yu D
    ACS Nano; 2015 Sep; 9(9):8851-8. PubMed ID: 26279456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Augmented Quantum Yield of a 2D Monolayer Photodetector by Surface Plasmon Coupling.
    Bang S; Duong NT; Lee J; Cho YH; Oh HM; Kim H; Yun SJ; Park C; Kwon MK; Kim JY; Kim J; Jeong MS
    Nano Lett; 2018 Apr; 18(4):2316-2323. PubMed ID: 29561626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmon-induced doping of graphene.
    Fang Z; Wang Y; Liu Z; Schlather A; Ajayan PM; Koppens FH; Nordlander P; Halas NJ
    ACS Nano; 2012 Nov; 6(11):10222-8. PubMed ID: 22998468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Split Bull's eye shaped aluminum antenna for plasmon-enhanced nanometer scale germanium photodetector.
    Ren FF; Ang KW; Ye J; Yu M; Lo GQ; Kwong DL
    Nano Lett; 2011 Mar; 11(3):1289-93. PubMed ID: 21306111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spontaneous Hot-Electron Light Emission from Electron-Fed Optical Antennas.
    Buret M; Uskov AV; Dellinger J; Cazier N; Mennemanteuil MM; Berthelot J; Smetanin IV; Protsenko IE; Colas-des-Francs G; Bouhelier A
    Nano Lett; 2015 Sep; 15(9):5811-8. PubMed ID: 26214575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Broad electrical tuning of graphene-loaded plasmonic antennas.
    Yao Y; Kats MA; Genevet P; Yu N; Song Y; Kong J; Capasso F
    Nano Lett; 2013 Mar; 13(3):1257-64. PubMed ID: 23441688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmonic antenna effects on photochemical reactions.
    Gao S; Ueno K; Misawa H
    Acc Chem Res; 2011 Apr; 44(4):251-60. PubMed ID: 21381706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zero-Bias Visible to Near-Infrared Horizontal p-n-p TiO
    Huang Z; Ji C; Cheng L; Han J; Yang M; Wei X; Jiang Y; Wang J
    Molecules; 2019 May; 24(10):. PubMed ID: 31096628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Review on the Development of Tunable Graphene Nanoantennas for Terahertz Optoelectronic and Plasmonic Applications.
    Ullah Z; Witjaksono G; Nawi I; Tansu N; Irfan Khattak M; Junaid M
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32143388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.