These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 22703611)
21. Assimilation of methane and inorganic carbon by microbial communities mediating the anaerobic oxidation of methane. Wegener G; Niemann H; Elvert M; Hinrichs KU; Boetius A Environ Microbiol; 2008 Sep; 10(9):2287-98. PubMed ID: 18498367 [TBL] [Abstract][Full Text] [Related]
22. Chemo- and periselectivity in the addition of [OsO2(CH2)2] to ethylene: a theoretical study. Hölscher M; Leitner W; Holthausen MC; Frenking G Chemistry; 2005 Aug; 11(16):4700-8. PubMed ID: 15915524 [TBL] [Abstract][Full Text] [Related]
23. Mechanistic aspects of propene epoxidation by hydrogen peroxide. Catalytic role of water molecules, external electric field, and zeolite framework of TS-1. Stare J; Henson NJ; Eckert J J Chem Inf Model; 2009 Apr; 49(4):833-46. PubMed ID: 19267473 [TBL] [Abstract][Full Text] [Related]
24. In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation of methane with sulfate. Nauhaus K; Albrecht M; Elvert M; Boetius A; Widdel F Environ Microbiol; 2007 Jan; 9(1):187-96. PubMed ID: 17227423 [TBL] [Abstract][Full Text] [Related]
27. Why are olefins oxidized by RuO4 under cleavage of the carbon-carbon bond whereas oxidation by OsO4 yields cis-diols? Frunzke J; Loschen C; Frenking G J Am Chem Soc; 2004 Mar; 126(11):3642-52. PubMed ID: 15025493 [TBL] [Abstract][Full Text] [Related]
28. High rates of anaerobic methanotrophy at low sulfate concentrations with implications for past and present methane levels. Beal EJ; Claire MW; House CH Geobiology; 2011 Mar; 9(2):131-9. PubMed ID: 21231994 [TBL] [Abstract][Full Text] [Related]
30. [Geochemical characteristics of the carbonate constructions formed during microbial oxidation of methane under anaerobic conditions]. Lein AIu; Ivanov MV; Pimenov NV; Gulin MB Mikrobiologiia; 2002; 71(1):89-102. PubMed ID: 11910813 [TBL] [Abstract][Full Text] [Related]
31. Reaction pathways and free energy barriers for alkaline hydrolysis of insecticide 2-trimethylammonioethyl methylphosphonofluoridate and related organophosphorus compounds: electrostatic and steric effects. Xiong Y; Zhan CG J Org Chem; 2004 Nov; 69(24):8451-8. PubMed ID: 15549820 [TBL] [Abstract][Full Text] [Related]
32. A new mechanism for methane production from methyl-coenzyme M reductase as derived from density functional calculations. Duin EC; McKee ML J Phys Chem B; 2008 Feb; 112(8):2466-82. PubMed ID: 18247503 [TBL] [Abstract][Full Text] [Related]
33. Decomposition of methylbenzyl radicals in the pyrolysis and oxidation of xylenes. da Silva G; Moore EE; Bozzelli JW J Phys Chem A; 2009 Sep; 113(38):10264-78. PubMed ID: 19757847 [TBL] [Abstract][Full Text] [Related]
34. Insights into the glycyl radical enzyme active site of benzylsuccinate synthase: a computational study. Bharadwaj VS; Dean AM; Maupin CM J Am Chem Soc; 2013 Aug; 135(33):12279-88. PubMed ID: 23865732 [TBL] [Abstract][Full Text] [Related]
35. Does the MgO(100)-support facilitate the reaction of nitrogen and hydrogen molecules catalyzed by Zr2Pd2 clusters? A computational study. Kuznetsov AE; Musaev DG Inorg Chem; 2010 Mar; 49(5):2557-67. PubMed ID: 20128599 [TBL] [Abstract][Full Text] [Related]
36. [Anaerobic methane oxidation and sulfate reduction in bacterial mats of coral-like carbonate structures in the Black Sea]. Pimenov NV; Ivanova AE Mikrobiologiia; 2005; 74(3):420-9. PubMed ID: 16119857 [TBL] [Abstract][Full Text] [Related]
37. Spectroelectrochemical study of hemoglobin A, alpha- and beta-fumarate crosslinked hemoglobins; implications to autoxidation reaction. Dragan SA; Olsen KW; Moore EG; Fitch A Bioelectrochemistry; 2008 Jun; 73(1):55-63. PubMed ID: 18515189 [TBL] [Abstract][Full Text] [Related]
38. On-the-fly ab initio trajectory calculations of the dynamics of Cl atom reactions with methane, ethane and methanol. Rudić S; Murray C; Harvey JN; Orr-Ewing AJ J Chem Phys; 2004 Jan; 120(1):186-98. PubMed ID: 15267276 [TBL] [Abstract][Full Text] [Related]
39. The potential of bio-methane as bio-fuel/bio-energy for reducing greenhouse gas emissions: a qualitative assessment for Europe in a life cycle perspective. Tilche A; Galatola M Water Sci Technol; 2008; 57(11):1683-92. PubMed ID: 18547917 [TBL] [Abstract][Full Text] [Related]
40. A microbial consortium couples anaerobic methane oxidation to denitrification. Raghoebarsing AA; Pol A; van de Pas-Schoonen KT; Smolders AJ; Ettwig KF; Rijpstra WI; Schouten S; Damsté JS; Op den Camp HJ; Jetten MS; Strous M Nature; 2006 Apr; 440(7086):918-21. PubMed ID: 16612380 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]