These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

585 related articles for article (PubMed ID: 22703999)

  • 1. Ecotoxicological assessment and evaluation of a pine bark biosorbent treatment of five landfill leachates.
    Ribé V; Nehrenheim E; Odlare M; Gustavsson L; Berglind R; Forsberg A
    Waste Manag; 2012 Oct; 32(10):1886-94. PubMed ID: 22703999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leaching of contaminants from untreated pine bark in a batch study: chemical analysis and ecotoxicological evaluation.
    Ribé V; Nehrenheim E; Odlare M; Waara S
    J Hazard Mater; 2009 Apr; 163(2-3):1096-100. PubMed ID: 18757135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retention of 2,4,6-trinitrotoluene and heavy metals from industrial waste water by using the low cost adsorbent pine bark in a batch experiment.
    Nehrenheim E; Odlare M; Allard B
    Water Sci Technol; 2011; 64(10):2052-8. PubMed ID: 22105128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlation between physicochemical and ecotoxicological approaches to estimate landfill leachates toxicity.
    Pablos MV; Martini F; Fernández C; Babín MM; Herraez I; Miranda J; Martínez J; Carbonell G; San-Segundo L; García-Hortigüela P; Tarazona JV
    Waste Manag; 2011 Aug; 31(8):1841-7. PubMed ID: 21530225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal retention on pine bark and blast furnace slag--on-site experiment for treatment of low strength landfill leachate.
    Nehrenheim E; Waara S; Johansson Westholm L
    Bioresour Technol; 2008 Mar; 99(5):998-1005. PubMed ID: 17462882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of mobility and bioavailability of contaminants in MSW incineration ash with aquatic and terrestrial bioassays.
    Ribé V; Nehrenheim E; Odlare M
    Waste Manag; 2014 Oct; 34(10):1871-6. PubMed ID: 24502934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ecotoxicological effects on Lemna minor and Daphnia magna of leachates from differently aged landfills of Ghana.
    Sackey LNA; Kočí V; van Gestel CAM
    Sci Total Environ; 2020 Jan; 698():134295. PubMed ID: 31505355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the hazardous impact of landfill leachates by toxicity and biodegradability tests.
    Kalcíková G; Vávrová M; Zagorc-Koncan J; Gotvajn AZ
    Environ Technol; 2011; 32(11-12):1345-53. PubMed ID: 21970176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toxicity of waste gasification bottom ash leachate.
    Sivula L; Oikari A; Rintala J
    Waste Manag; 2012 Jun; 32(6):1171-8. PubMed ID: 22285871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alternative solutions for the bio-denitrification of landfill leachates using pine bark and compost.
    Trois C; Pisano G; Oxarango L
    J Hazard Mater; 2010 Jun; 178(1-3):1100-5. PubMed ID: 20122792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of chemical and ecotoxicological characteristics of biodegradable organic residues for application to agricultural land.
    Alvarenga P; Palma P; Gonçalves AP; Fernandes RM; Cunha-Queda AC; Duarte E; Vallini G
    Environ Int; 2007 May; 33(4):505-13. PubMed ID: 17188749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of dissolved organic carbon on sorption of heavy metals on urea-treated pine bark.
    Khokhotva O; Waara S
    J Hazard Mater; 2010 Jan; 173(1-3):689-96. PubMed ID: 19836133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Whole effluent assessment of industrial wastewater for determination of BAT compliance. Part 2: metal surface treatment industry.
    Gartiser S; Hafner C; Hercher C; Kronenberger-Schäfer K; Paschke A
    Environ Sci Pollut Res Int; 2010 Jun; 17(5):1149-57. PubMed ID: 20127188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alternative materials for adsorption of heavy metals and petroleum hydrocarbons from contaminated leachates.
    Kalmykova Y; Strömvall AM; Steenari BM
    Environ Technol; 2008 Jan; 29(1):111-22. PubMed ID: 18610551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acute toxicity test of leachates from traditional and sustainable landfills using luminescent bacteria.
    Pivato A; Gaspari L
    Waste Manag; 2006; 26(10):1148-55. PubMed ID: 16356704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leachates draining from controlled municipal solid waste landfill: Detailed geochemical characterization and toxicity tests.
    Mavakala BK; Le Faucheur S; Mulaji CK; Laffite A; Devarajan N; Biey EM; Giuliani G; Otamonga JP; Kabatusuila P; Mpiana PT; Poté J
    Waste Manag; 2016 Sep; 55():238-48. PubMed ID: 27177465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of environmental conditions on the stability of heavy metal-filter material complex as assessed by the leaching of adsorbed metal ions.
    Khokhotva O; Waara S
    Environ Pollut; 2011 Jun; 159(6):1461-3. PubMed ID: 21398001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determining toxicity of leachates from Florida municipal solid waste landfills using a battery-of-tests approach.
    Ward ML; Bitton G; Townsend T; Booth M
    Environ Toxicol; 2002; 17(3):258-66. PubMed ID: 12112634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heavy metal binding capacity (HMBC) of municipal solid waste landfill leachates.
    Ward ML; Bitton G; Townsend T
    Chemosphere; 2005 Jul; 60(2):206-15. PubMed ID: 15914240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The analysis of the possibility of using biological tests for assessment of toxicity of leachate from an active municipal landfill.
    Przydatek G
    Environ Toxicol Pharmacol; 2019 Apr; 67():94-101. PubMed ID: 30772780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.