These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 22704548)
1. Control of food intake by metabolism of fuels: a comparison across species. Allen MS; Bradford BJ Proc Nutr Soc; 2012 Aug; 71(3):401-9. PubMed ID: 22704548 [TBL] [Abstract][Full Text] [Related]
2. Board Invited Review: The hepatic oxidation theory of the control of feed intake and its application to ruminants. Allen MS; Bradford BJ; Oba M J Anim Sci; 2009 Oct; 87(10):3317-34. PubMed ID: 19648500 [TBL] [Abstract][Full Text] [Related]
3. Role of lipids in the control of food intake. Fantino M Curr Opin Clin Nutr Metab Care; 2011 Mar; 14(2):138-44. PubMed ID: 21252653 [TBL] [Abstract][Full Text] [Related]
4. A review of energy metabolism in producing ruminants. Part 1: Metabolism of energy substrates. van der Walt JG; Linington MJ J S Afr Vet Assoc; 1989 Dec; 60(4):223-7. PubMed ID: 2487734 [TBL] [Abstract][Full Text] [Related]
5. Effects of diet on short-term regulation of feed intake by lactating dairy cattle. Allen MS J Dairy Sci; 2000 Jul; 83(7):1598-624. PubMed ID: 10908065 [TBL] [Abstract][Full Text] [Related]
6. Dissociation of mercaptoacetate's effects on feeding and fat metabolism by dietary medium- and long-chain triacylglycerols in rats. Mansouri A; Koss MD; Brandt K; Geary N; Langhans W; Leonhardt M Nutrition; 2008 Apr; 24(4):360-5. PubMed ID: 18234475 [TBL] [Abstract][Full Text] [Related]
7. [Findings on intermediate metabolism in ruminants]. Demigné C; Yacoub C; Morand C; Rémésy C Reprod Nutr Dev (1980); 1988; 28(1):1-17. PubMed ID: 3281195 [TBL] [Abstract][Full Text] [Related]
8. Microbial fatty acid conversion within the rumen and the subsequent utilization of these fatty acids to improve the healthfulness of ruminant food products. Or-Rashid MM; Wright TC; McBride BW Appl Microbiol Biotechnol; 2009 Oct; 84(6):1033-43. PubMed ID: 19685048 [TBL] [Abstract][Full Text] [Related]
9. Regulation of lipid metabolism in the rumen. Jenkins TC J Nutr; 1994 Aug; 124(8 Suppl):1372S-1376G. PubMed ID: 8064386 [TBL] [Abstract][Full Text] [Related]
10. Ruminant Nutrition Symposium: Role of fermentation acid absorption in the regulation of ruminal pH. Aschenbach JR; Penner GB; Stumpff F; Gäbel G J Anim Sci; 2011 Apr; 89(4):1092-107. PubMed ID: 20952531 [TBL] [Abstract][Full Text] [Related]
11. Review: Control of feed intake by hepatic oxidation in ruminant animals: integration of homeostasis and homeorhesis. Allen MS Animal; 2020 Mar; 14(S1):s55-s64. PubMed ID: 32024573 [TBL] [Abstract][Full Text] [Related]
12. Effects of dietary n-6:n-3 fatty acid ratio on feed intake, digestibility, and fatty acid profiles of the ruminal contents, liver, and muscle of growing lambs. Kim SC; Adesogan AT; Badinga L; Staples CR J Anim Sci; 2007 Mar; 85(3):706-16. PubMed ID: 17121972 [TBL] [Abstract][Full Text] [Related]
13. Control of food intake by fatty acid oxidation and ketogenesis. Scharrer E Nutrition; 1999 Sep; 15(9):704-14. PubMed ID: 10467616 [TBL] [Abstract][Full Text] [Related]
14. Fatty acid oxidation in the energostatic control of eating--a new idea. Langhans W Appetite; 2008 Nov; 51(3):446-51. PubMed ID: 18656507 [TBL] [Abstract][Full Text] [Related]
16. Empirical prediction of net portal appearance of volatile fatty acids, glucose, and their secondary metabolites (beta-hydroxybutyrate, lactate) from dietary characteristics in ruminants: A meta-analysis approach. Loncke C; Ortigues-Marty I; Vernet J; Lapierre H; Sauvant D; Nozière P J Anim Sci; 2009 Jan; 87(1):253-68. PubMed ID: 18791148 [TBL] [Abstract][Full Text] [Related]
17. Intraruminal propionate supplementation modifies hindlimb energy metabolism without changing the splanchnic release of glucose in growing lambs. Majdoub L; Vermorel M; Ortigues-Marty I Br J Nutr; 2003 Jan; 89(1):39-50. PubMed ID: 12568663 [TBL] [Abstract][Full Text] [Related]
18. Fat intake and energy-balance effects. Westerterp-Plantenga MS Physiol Behav; 2004 Dec; 83(4):579-85. PubMed ID: 15621063 [TBL] [Abstract][Full Text] [Related]
19. Increasing dietary sugar concentration may improve dry matter intake, ruminal fermentation, and productivity of dairy cows in the postpartum phase of the transition period. Penner GB; Oba M J Dairy Sci; 2009 Jul; 92(7):3341-53. PubMed ID: 19528611 [TBL] [Abstract][Full Text] [Related]
20. Regulation of fatty acid transport protein and mitochondrial and peroxisomal beta-oxidation gene expression by fatty acids in developing rats. Ouali F; Djouadi F; Merlet-Bénichou C; Riveau B; Bastin J Pediatr Res; 2000 Nov; 48(5):691-6. PubMed ID: 11044493 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]