These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
85 related articles for article (PubMed ID: 22705027)
1. Variable intron/exon structure in the oligochaete lombricine kinase gene. Doumen C Gene; 2012 Sep; 505(2):276-82. PubMed ID: 22705027 [TBL] [Abstract][Full Text] [Related]
2. cDNA identification, comparison and phylogenetic aspects of lombricine kinase from two oligochaete species. Doumen C Comp Biochem Physiol B Biochem Mol Biol; 2010 Jun; 156(2):137-43. PubMed ID: 20230902 [TBL] [Abstract][Full Text] [Related]
3. Origin and properties of cytoplasmic and mitochondrial isoforms of taurocyamine kinase. Uda K; Saishoji N; Ichinari S; Ellington WR; Suzuki T FEBS J; 2005 Jul; 272(14):3521-30. PubMed ID: 16008553 [TBL] [Abstract][Full Text] [Related]
4. Evolution of the diverse array of phosphagen systems present in annelids. Suzuki T; Uda K; Adachi M; Sanada H; Tanaka K; Mizuta C; Ishida K; Ellington WR Comp Biochem Physiol B Biochem Mol Biol; 2009 Jan; 152(1):60-6. PubMed ID: 18852060 [TBL] [Abstract][Full Text] [Related]
5. Phosphagen kinase of the giant tubeworm Riftia pachyptila. Cloning and expression of cytoplasmic and mitochondrial isoforms of taurocyamine kinase. Uda K; Tanaka K; Bailly X; Zal F; Suzuki T Int J Biol Macromol; 2005 Oct; 37(1-2):54-60. PubMed ID: 16188310 [TBL] [Abstract][Full Text] [Related]
6. Role of amino-acid residue 95 in substrate specificity of phosphagen kinases. Tanaka K; Suzuki T FEBS Lett; 2004 Aug; 573(1-3):78-82. PubMed ID: 15327979 [TBL] [Abstract][Full Text] [Related]
7. Evolution of phosphagen kinase. VI. Isolation, characterization and cDNA-derived amino acid sequence of lombricine kinase from the earthworm Eisenia foetida, and identification of a possible candidate for the guanidine substrate recognition site. Suzuki T; Kawasaki Y; Furukohri T; Ellington WR Biochim Biophys Acta; 1997 Dec; 1343(2):152-9. PubMed ID: 9434106 [TBL] [Abstract][Full Text] [Related]
8. Cloning and expression of a lombricine kinase from an echiuroid worm: insights into structural correlates of substrate specificity. Ellington WR; Bush J Biochem Biophys Res Commun; 2002 Mar; 291(4):939-44. PubMed ID: 11866456 [TBL] [Abstract][Full Text] [Related]
9. Hypotaurocyamine kinase evolved from a gene for arginine kinase. Uda K; Iwai A; Suzuki T FEBS Lett; 2005 Dec; 579(30):6756-62. PubMed ID: 16325813 [TBL] [Abstract][Full Text] [Related]
10. Evolution of phosphagen kinase. Primary structure of glycocyamine kinase and arginine kinase from invertebrates. Suzuki T; Furukohri T J Mol Biol; 1994 Apr; 237(3):353-7. PubMed ID: 8145248 [TBL] [Abstract][Full Text] [Related]
11. Evolution of the cytoplasmic and mitochondrial phosphagen kinases unique to annelid groups. Tanaka K; Uda K; Shimada M; Takahashi K; Gamou S; Ellington WR; Suzuki T J Mol Evol; 2007 Nov; 65(5):616-25. PubMed ID: 17932618 [TBL] [Abstract][Full Text] [Related]
12. Gene structure of the two-domain taurocyamine kinase from Paragonimus westermani: evidence for a distinct lineage of trematode phosphagen kinases. Jarilla BR; Tokuhiro S; Nagataki M; Uda K; Suzuki T; Acosta LP; Agatsuma T FEBS Lett; 2013 Jul; 587(14):2278-83. PubMed ID: 23751729 [TBL] [Abstract][Full Text] [Related]
13. A diverse array of creatine kinase and arginine kinase isoform genes is present in the starlet sea anemone Nematostella vectensis, a cnidarian model system for studying developmental evolution. Uda K; Ellington WR; Suzuki T Gene; 2012 Apr; 497(2):214-27. PubMed ID: 22305986 [TBL] [Abstract][Full Text] [Related]
15. Phosphagen kinase in Schistosoma japonicum: characterization of its enzymatic properties and determination of its gene structure. Tokuhiro S; Uda K; Yano H; Nagataki M; Jarilla BR; Suzuki T; Agatsuma T Mol Biochem Parasitol; 2013 Apr; 188(2):91-8. PubMed ID: 23603791 [TBL] [Abstract][Full Text] [Related]
16. Origin of the genes for the isoforms of creatine kinase. Bertin M; Pomponi SM; Kokuhuta C; Iwasaki N; Suzuki T; Ellington WR Gene; 2007 May; 392(1-2):273-82. PubMed ID: 17329042 [TBL] [Abstract][Full Text] [Related]
17. Characterization of a putative oomycete taurocyamine kinase: Implications for the evolution of the phosphagen kinase family. Palmer A; Begres BN; Van Houten JM; Snider MJ; Fraga D Comp Biochem Physiol B Biochem Mol Biol; 2013; 166(3-4):173-81. PubMed ID: 23978736 [TBL] [Abstract][Full Text] [Related]
18. The role of Arg-96 in Danio rerio creatine kinase in substrate recognition and active center configuration. Uda K; Kuwasaki A; Shima K; Matsumoto T; Suzuki T Int J Biol Macromol; 2009 Jun; 44(5):413-8. PubMed ID: 19428475 [TBL] [Abstract][Full Text] [Related]
19. Phosphagen kinase in Schistosoma japonicum: II. Determination of amino acid residues essential for substrate catalysis using site-directed mutagenesis. Tokuhiro S; Nagataki M; Jarilla BR; Uda K; Suzuki T; Sugiura T; Agatsuma T Mol Biochem Parasitol; 2014; 194(1-2):56-63. PubMed ID: 24815317 [TBL] [Abstract][Full Text] [Related]
20. The role of Y84 on domain 1 and Y87 on domain 2 of Paragonimus westermani taurocyamine kinase: Insights on the substrate binding mechanism of a trematode phosphagen kinase. Jarilla BR; Tokuhiro S; Nagataki M; Uda K; Suzuki T; Acosta LP; Agatsuma T Exp Parasitol; 2013 Dec; 135(4):695-700. PubMed ID: 24184078 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]