These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 22705498)

  • 1. Enhancement in broadband and quasi-omnidirectional antireflection of nanopillar arrays by ion milling.
    Huang Z; Hawkeye MM; Brett MJ
    Nanotechnology; 2012 Jul; 23(27):275703. PubMed ID: 22705498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures.
    Huang YF; Chattopadhyay S; Jen YJ; Peng CY; Liu TA; Hsu YK; Pan CL; Lo HC; Hsu CH; Chang YH; Lee CS; Chen KH; Chen LC
    Nat Nanotechnol; 2007 Dec; 2(12):770-4. PubMed ID: 18654429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Periodic si nanopillar arrays fabricated by colloidal lithography and catalytic etching for broadband and omnidirectional elimination of Fresnel reflection.
    Wang HP; Lai KY; Lin YR; Lin CA; He JH
    Langmuir; 2010 Aug; 26(15):12855-8. PubMed ID: 20666420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced broadband and omni-directional performance of polycrystalline Si solar cells by using discrete multilayer antireflection coatings.
    Oh SJ; Chhajed S; Poxson DJ; Cho J; Schubert EF; Tark SJ; Kim D; Kim JK
    Opt Express; 2013 Jan; 21 Suppl 1():A157-66. PubMed ID: 23389267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioinspired parabola subwavelength structures for improved broadband antireflection.
    Song YM; Jang SJ; Yu JS; Lee YT
    Small; 2010 May; 6(9):984-7. PubMed ID: 20461734
    [No Abstract]   [Full Text] [Related]  

  • 6. Biomimetic artificial Si compound eye surface structures with broadband and wide-angle antireflection properties for Si-based optoelectronic applications.
    Leem JW; Song YM; Yu JS
    Nanoscale; 2013 Nov; 5(21):10455-60. PubMed ID: 24056915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiscale patterning of plasmonic metamaterials.
    Henzie J; Lee MH; Odom TW
    Nat Nanotechnol; 2007 Sep; 2(9):549-54. PubMed ID: 18654366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diffraction from arrays of plasmonic nanoparticles with short-range lateral order.
    Schwind M; Miljković VD; Zäch M; Gusak V; Käll M; Zorić I; Johansson P
    ACS Nano; 2012 Nov; 6(11):9455-65. PubMed ID: 23051025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved antireflection properties of moth eye mimicking nanopillars on transparent glass: flat antireflection and color tuning.
    Ji S; Park J; Lim H
    Nanoscale; 2012 Aug; 4(15):4603-10. PubMed ID: 22706661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlation lengths, porosity and water adsorption in TiO₂ thin films prepared by glancing angle deposition.
    González-García L; Parra-Barranco J; Sánchez-Valencia JR; Barranco A; Borrás A; González-Elipe AR; García-Gutiérrez MC; Hernández JJ; Rueda DR; Ezquerra TA
    Nanotechnology; 2012 May; 23(20):205701. PubMed ID: 22543422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gold mesoflower arrays with sub-10 nm intraparticle gaps for highly sensitive and repeatable surface enhanced Raman spectroscopy.
    Tian C; Liu Z; Jin J; Lebedkin S; Huang C; You H; Liu R; Wang L; Song X; Ding B; Barczewski M; Schimmel T; Fang J
    Nanotechnology; 2012 Apr; 23(16):165604. PubMed ID: 22469765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Broadband and omnidirectional antireflection employing disordered GaN nanopillars.
    Chiu CH; Yu P; Kuo HC; Chen CC; Lu TC; Wang SC; Hsu SH; Cheng YJ; Chang YC
    Opt Express; 2008 Jun; 16(12):8748-54. PubMed ID: 18545588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmonic nanopillar arrays for large-area, high-enhancement surface-enhanced Raman scattering sensors.
    Caldwell JD; Glembocki O; Bezares FJ; Bassim ND; Rendell RW; Feygelson M; Ukaegbu M; Kasica R; Shirey L; Hosten C
    ACS Nano; 2011 May; 5(5):4046-55. PubMed ID: 21480637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical impedance matching using coupled plasmonic nanoparticle arrays.
    Spinelli P; Hebbink M; de Waele R; Black L; Lenzmann F; Polman A
    Nano Lett; 2011 Apr; 11(4):1760-5. PubMed ID: 21410242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface antireflection properties of GaN nanostructures with various effective refractive index profiles.
    Han L; Zhao H
    Opt Express; 2014 Dec; 22(26):31907-16. PubMed ID: 25607159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A study of the anti-reflection efficiency of natural nano-arrays of varying sizes.
    Sun M; Liang A; Zheng Y; Watson GS; Watson JA
    Bioinspir Biomim; 2011 Jun; 6(2):026003. PubMed ID: 21464519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Periodic Si nanopillar arrays by anodic aluminum oxide template and catalytic etching for broadband and omnidirectional light harvesting.
    Wang HP; Tsai KT; Lai KY; Wei TC; Wang YL; He JH
    Opt Express; 2012 Jan; 20(1):A94-103. PubMed ID: 22379674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Broadband and omnidirectional light harvesting enhancement of fluorescent SiC.
    Ou Y; Jokubavicius V; Hens P; Kaiser M; Wellmann P; Yakimova R; Syväjärvi M; Ou H
    Opt Express; 2012 Mar; 20(7):7575-9. PubMed ID: 22453436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoskiving: a new method to produce arrays of nanostructures.
    Xu Q; Rioux RM; Dickey MD; Whitesides GM
    Acc Chem Res; 2008 Dec; 41(12):1566-77. PubMed ID: 18646870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep UV nano-microstructuring of substrates for surface plasmon resonance imaging.
    Dhawan A; Duval A; Nakkach M; Barbillon G; Moreau J; Canva M; Vo-Dinh T
    Nanotechnology; 2011 Apr; 22(16):165301. PubMed ID: 21393822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.