BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 22705514)

  • 21. Sorption of phthalate acid esters on black carbon from different sources.
    Xia X; Dai Z; Zhang J
    J Environ Monit; 2011 Oct; 13(10):2858-64. PubMed ID: 21842075
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluating phenanthrene sorption on various wood chars.
    James G; Sabatini DA; Chiou CT; Rutherford D; Scott AC; Karapanagioti HK
    Water Res; 2005 Feb; 39(4):549-58. PubMed ID: 15707627
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of biochar aging on surface characteristics and adsorption behavior of dialkyl phthalates.
    Ghaffar A; Ghosh S; Li F; Dong X; Zhang D; Wu M; Li H; Pan B
    Environ Pollut; 2015 Nov; 206():502-9. PubMed ID: 26281762
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Resource utilization of a typical vegetable waste as biochars in removing phthalate acid esters from water: A sorption case study.
    Yao S; Li X; Cheng H; Zhang C; Bian Y; Jiang X; Song Y
    Bioresour Technol; 2019 Dec; 293():122081. PubMed ID: 31479855
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differential sorption behaviour of aromatic hydrocarbons on charcoals prepared at different temperatures from grass and wood.
    Bornemann LC; Kookana RS; Welp G
    Chemosphere; 2007 Mar; 67(5):1033-42. PubMed ID: 17157349
    [TBL] [Abstract][Full Text] [Related]  

  • 26. One-pot pyrolysis of a typical invasive plant into nitrogen-doped biochars for efficient sorption of phthalate esters from aqueous solution.
    Zhang L; Cheng H; Pan D; Wu Y; Ji R; Li W; Jiang X; Han J
    Chemosphere; 2021 Oct; 280():130712. PubMed ID: 33971415
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization and phthalate esters sorption of organic matter fractions isolated from soils and sediments.
    Jin J; Sun K; Wang Z; Han L; Pan Z; Wu F; Liu X; Zhao Y; Xing B
    Environ Pollut; 2015 Nov; 206():24-31. PubMed ID: 26142747
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sorption of chlorinated hydrocarbons to biochars in aqueous environment: Effects of the amorphous carbon structure of biochars and the molecular properties of adsorbates.
    Chen W; Wei R; Ni J; Yang L; Qian W; Yang Y
    Chemosphere; 2018 Nov; 210():753-761. PubMed ID: 30036823
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Variation in sorption of propiconazole with biochars: The effect of temperature, mineral, molecular structure, and nano-porosity.
    Sun K; Kang M; Ro KS; Libra JA; Zhao Y; Xing B
    Chemosphere; 2016 Jan; 142():56-63. PubMed ID: 26206746
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sorption of bisphenol A, 17α-ethinyl estradiol and phenanthrene on thermally and hydrothermally produced biochars.
    Sun K; Ro K; Guo M; Novak J; Mashayekhi H; Xing B
    Bioresour Technol; 2011 May; 102(10):5757-63. PubMed ID: 21463938
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of biochars to evaluate recalcitrance and agronomic performance.
    Enders A; Hanley K; Whitman T; Joseph S; Lehmann J
    Bioresour Technol; 2012 Jun; 114():644-53. PubMed ID: 22483559
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Impact of irreversible sorption of phthalate acid esters on their sediment quality criteria.
    Xia X; Zhang J; Sha Y; Li J
    J Environ Monit; 2012 Jan; 14(1):258-65. PubMed ID: 22130513
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fast and slow rates of naphthalene sorption to biochars produced at different temperatures.
    Chen Z; Chen B; Chiou CT
    Environ Sci Technol; 2012 Oct; 46(20):11104-11. PubMed ID: 22970831
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Co-removal of phthalic acid esters with dissolved organic matter from landfill leachate by coagulation and flocculation process.
    Zheng Z; Zhang H; He PJ; Shao LM; Chen Y; Pang L
    Chemosphere; 2009 Apr; 75(2):180-6. PubMed ID: 19147179
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modeling and evaluation of chromium remediation from water using low cost bio-char, a green adsorbent.
    Mohan D; Rajput S; Singh VK; Steele PH; Pittman CU
    J Hazard Mater; 2011 Apr; 188(1-3):319-33. PubMed ID: 21354700
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adsorption of phthalic acid and its esters onto high-area activated carbon-cloth studied by in situ UV-spectroscopy.
    Ayranci E; Bayram E
    J Hazard Mater; 2005 Jun; 122(1-2):147-53. PubMed ID: 15943937
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Germination tests for assessing biochar quality.
    Rogovska N; Laird D; Cruse RM; Trabue S; Heaton E
    J Environ Qual; 2012; 41(4):1014-22. PubMed ID: 22751043
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characteristics and nutrient values of biochars produced from giant reed at different temperatures.
    Zheng H; Wang Z; Deng X; Zhao J; Luo Y; Novak J; Herbert S; Xing B
    Bioresour Technol; 2013 Feb; 130():463-71. PubMed ID: 23313694
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamic molecular structure of plant biomass-derived black carbon (biochar).
    Keiluweit M; Nico PS; Johnson MG; Kleber M
    Environ Sci Technol; 2010 Feb; 44(4):1247-53. PubMed ID: 20099810
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Characterization of biochar by X-ray photoelectron spectroscopy and 13C nuclear magnetic resonance].
    Xu DY; Jin J; Yan Y; Han LF; Kang MJ; Wang ZY; Zhao Y; Sun K
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Dec; 34(12):3415-8. PubMed ID: 25881450
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.