These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 22705514)

  • 41. Phosphate and ammonium sorption capacity of biochar and hydrochar from different wastes.
    Takaya CA; Fletcher LA; Singh S; Anyikude KU; Ross AB
    Chemosphere; 2016 Feb; 145():518-27. PubMed ID: 26702555
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Metal interactions at the biochar-water interface: energetics and structure-sorption relationships elucidated by flow adsorption microcalorimetry.
    Harvey OR; Herbert BE; Rhue RD; Kuo LJ
    Environ Sci Technol; 2011 Jul; 45(13):5550-6. PubMed ID: 21630654
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Competitive adsorption and transport of phthalate esters in the clay layer of JiangHan plain, China.
    Liu H; Zhang D; Li M; Tong L; Feng L
    Chemosphere; 2013 Sep; 92(11):1542-9. PubMed ID: 23706400
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sorption of organic contaminants by biopolymers: role of polarity, structure and domain spatial arrangement.
    Wang X; Cook R; Tao S; Xing B
    Chemosphere; 2007 Jan; 66(8):1476-84. PubMed ID: 17095043
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A review on efficient removal of phthalic acid esters via biochars and transition metals-activated persulfate systems.
    Xiong YH; Pei DS
    Chemosphere; 2021 Aug; 277():130256. PubMed ID: 33773311
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Single-solute and bi-solute sorption of phenanthrene and dibutyl phthalate by plant- and manure-derived biochars.
    Jin J; Sun K; Wu F; Gao B; Wang Z; Kang M; Bai Y; Zhao Y; Liu X; Xing B
    Sci Total Environ; 2014 Mar; 473-474():308-16. PubMed ID: 24374592
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Sorption and degradation of phthalate esters by a novel functional hyper-cross-linked polymer.
    Shi J; Li F; Yin D; Xu Z; Cheng L
    Chemosphere; 2017 Mar; 171():149-157. PubMed ID: 28013076
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comparative sorption and leaching study of the herbicides fluometuron and 4-chloro-2-methylphenoxyacetic acid (MCPA) in a soil amended with biochars and other sorbents.
    Cabrera A; Cox L; Spokas KA; Celis R; Hermosín MC; Cornejo J; Koskinen WC
    J Agric Food Chem; 2011 Dec; 59(23):12550-60. PubMed ID: 22023336
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Characterization of nitrogen-rich biomaterial-derived biochars and their sorption for aromatic compounds.
    Zhang M; Shu L; Shen X; Guo X; Tao S; Xing B; Wang X
    Environ Pollut; 2014 Dec; 195():84-90. PubMed ID: 25194275
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production.
    Mohan D; Pittman CU; Bricka M; Smith F; Yancey B; Mohammad J; Steele PH; Alexandre-Franco MF; Gómez-Serrano V; Gong H
    J Colloid Interface Sci; 2007 Jun; 310(1):57-73. PubMed ID: 17331527
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Phthalic acid esters in dissolved fractions of landfill leachates.
    Zheng Z; He PJ; Shao LM; Lee DJ
    Water Res; 2007 Dec; 41(20):4696-702. PubMed ID: 17631939
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Characterization of cadmium removal from aqueous solution by biochar produced from a giant Miscanthus at different pyrolytic temperatures.
    Kim WK; Shim T; Kim YS; Hyun S; Ryu C; Park YK; Jung J
    Bioresour Technol; 2013 Jun; 138():266-70. PubMed ID: 23619139
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Organo-mineral interactions mask the true sorption potential of biochars in soils.
    Singh N; Kookana RS
    J Environ Sci Health B; 2009 Mar; 44(3):214-9. PubMed ID: 19280473
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Adsorption and desorption of phthalic acid esters on graphene oxide and reduced graphene oxide as affected by humic acid.
    Lu L; Wang J; Chen B
    Environ Pollut; 2018 Jan; 232():505-513. PubMed ID: 28988871
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Qualitative analysis of volatile organic compounds on biochar.
    Spokas KA; Novak JM; Stewart CE; Cantrell KB; Uchimiya M; Dusaire MG; Ro KS
    Chemosphere; 2011 Oct; 85(5):869-82. PubMed ID: 21788060
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Assessment of herbicide sorption by biochars and organic matter associated with soil and sediment.
    Sun K; Gao B; Ro KS; Novak JM; Wang Z; Herbert S; Xing B
    Environ Pollut; 2012 Apr; 163():167-73. PubMed ID: 22325445
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Aromatic and hydrophobic surfaces of wood-derived biochar enhance perchlorate adsorption via hydrogen bonding to oxygen-containing organic groups.
    Fang Q; Chen B; Lin Y; Guan Y
    Environ Sci Technol; 2014; 48(1):279-88. PubMed ID: 24289306
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Adsorption of single-ring organic compounds to wood charcoals prepared under different thermochemical conditions.
    Zhu D; Kwon S; Pignatello JJ
    Environ Sci Technol; 2005 Jun; 39(11):3990-8. PubMed ID: 15984774
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Redox properties of plant biomass-derived black carbon (biochar).
    Klüpfel L; Keiluweit M; Kleber M; Sander M
    Environ Sci Technol; 2014 May; 48(10):5601-11. PubMed ID: 24749810
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Influence of aromatic structure and substitution of carboxyl groups of aromatic acids on their sorption to biochars.
    Wu L; Li B; Liu M
    Chemosphere; 2018 Nov; 210():239-246. PubMed ID: 30005345
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.