These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 22705677)
1. The only exoribonuclease present in Haloferax volcanii has an unique response to temperature changes. Matos RG; López-Viñas E; Goméz-Puertas P; Arraiano CM Biochim Biophys Acta; 2012 Oct; 1820(10):1543-52. PubMed ID: 22705677 [TBL] [Abstract][Full Text] [Related]
2. RNase R mutants elucidate the catalysis of structured RNA: RNA-binding domains select the RNAs targeted for degradation. Matos RG; Barbas A; Arraiano CM Biochem J; 2009 Sep; 423(2):291-301. PubMed ID: 19630750 [TBL] [Abstract][Full Text] [Related]
3. RNA polyadenylation and degradation in different Archaea; roles of the exosome and RNase R. Portnoy V; Schuster G Nucleic Acids Res; 2006; 34(20):5923-31. PubMed ID: 17065466 [TBL] [Abstract][Full Text] [Related]
4. RNase II: the finer details of the Modus operandi of a molecular killer. Arraiano CM; Matos RG; Barbas A RNA Biol; 2010; 7(3):276-81. PubMed ID: 20484980 [TBL] [Abstract][Full Text] [Related]
5. Homologs of aquifex aeolicus protein-only RNase P are not the major RNase P activities in the archaea haloferax volcanii and methanosarcina mazei. Schwarz TS; Wäber NB; Feyh R; Weidenbach K; Schmitz RA; Marchfelder A; Hartmann RK IUBMB Life; 2019 Aug; 71(8):1109-1116. PubMed ID: 31283101 [TBL] [Abstract][Full Text] [Related]
6. Characterization of the functional domains of Escherichia coli RNase II. Amblar M; Barbas A; Fialho AM; Arraiano CM J Mol Biol; 2006 Jul; 360(5):921-33. PubMed ID: 16806266 [TBL] [Abstract][Full Text] [Related]
7. Swapping the domains of exoribonucleases RNase II and RNase R: conferring upon RNase II the ability to degrade ds RNA. Matos RG; Barbas A; Gómez-Puertas P; Arraiano CM Proteins; 2011 Jun; 79(6):1853-67. PubMed ID: 21465561 [TBL] [Abstract][Full Text] [Related]
8. Characterizing ribonucleases in vitro examples of synergies between biochemical and structural analysis. Arraiano CM; Barbas A; Amblar M Methods Enzymol; 2008; 447():131-60. PubMed ID: 19161842 [TBL] [Abstract][Full Text] [Related]
9. Insights into how RNase R degrades structured RNA: analysis of the nuclease domain. Vincent HA; Deutscher MP J Mol Biol; 2009 Apr; 387(3):570-83. PubMed ID: 19361424 [TBL] [Abstract][Full Text] [Related]
10. New insights into the mechanism of RNA degradation by ribonuclease II: identification of the residue responsible for setting the RNase II end product. Barbas A; Matos RG; Amblar M; López-Viñas E; Gomez-Puertas P; Arraiano CM J Biol Chem; 2008 May; 283(19):13070-6. PubMed ID: 18337246 [TBL] [Abstract][Full Text] [Related]
11. The role of the S1 domain in exoribonucleolytic activity: substrate specificity and multimerization. Amblar M; Barbas A; Gomez-Puertas P; Arraiano CM RNA; 2007 Mar; 13(3):317-27. PubMed ID: 17242308 [TBL] [Abstract][Full Text] [Related]
12. Substrate recognition and catalysis by the exoribonuclease RNase R. Vincent HA; Deutscher MP J Biol Chem; 2006 Oct; 281(40):29769-75. PubMed ID: 16893880 [TBL] [Abstract][Full Text] [Related]
13. Complete reversal of coenzyme specificity of isocitrate dehydrogenase from Haloferax volcanii. Rodríguez-Arnedo A; Camacho M; Llorca F; Bonete MJ Protein J; 2005 Jul; 24(5):259-66. PubMed ID: 16284723 [TBL] [Abstract][Full Text] [Related]
14. tRNA 3' end maturation in archaea has eukaryotic features: the RNase Z from Haloferax volcanii. Schierling K; Rösch S; Rupprecht R; Schiffer S; Marchfelder A J Mol Biol; 2002 Mar; 316(4):895-902. PubMed ID: 11884130 [TBL] [Abstract][Full Text] [Related]
15. Biochemical characterization of the RNase II family of exoribonucleases from the human pathogens Salmonella typhimurium and Streptococcus pneumoniae. Domingues S; Matos RG; Reis FP; Fialho AM; Barbas A; Arraiano CM Biochemistry; 2009 Dec; 48(50):11848-57. PubMed ID: 19863111 [TBL] [Abstract][Full Text] [Related]
16. Identification of residues essential for the catalytic activity of Sec11b, one of the two type I signal peptidases of Haloferax volcanii. Fink-Lavi E; Eichler J FEMS Microbiol Lett; 2008 Jan; 278(2):257-60. PubMed ID: 18067576 [TBL] [Abstract][Full Text] [Related]
17. Unravelling the dynamics of RNA degradation by ribonuclease II and its RNA-bound complex. Frazão C; McVey CE; Amblar M; Barbas A; Vonrhein C; Arraiano CM; Carrondo MA Nature; 2006 Sep; 443(7107):110-4. PubMed ID: 16957732 [TBL] [Abstract][Full Text] [Related]
18. RNA polyadenylation in Archaea: not observed in Haloferax while the exosome polynucleotidylates RNA in Sulfolobus. Portnoy V; Evguenieva-Hackenberg E; Klein F; Walter P; Lorentzen E; Klug G; Schuster G EMBO Rep; 2005 Dec; 6(12):1188-93. PubMed ID: 16282984 [TBL] [Abstract][Full Text] [Related]
19. Mechanism of action of RNase T. I. Identification of residues required for catalysis, substrate binding, and dimerization. Zuo Y; Deutscher MP J Biol Chem; 2002 Dec; 277(51):50155-9. PubMed ID: 12364334 [TBL] [Abstract][Full Text] [Related]
20. rnr gene from the antarctic bacterium Pseudomonas syringae Lz4W, encoding a psychrophilic RNase R. Sulthana S; Rajyaguru PI; Mittal P; Ray MK Appl Environ Microbiol; 2011 Nov; 77(22):7896-904. PubMed ID: 21926201 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]