These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 22705677)
41. New molecular insights into an archaeal RNase J reveal a conserved processive exoribonucleolysis mechanism of the RNase J family. Zheng X; Feng N; Li D; Dong X; Li J Mol Microbiol; 2017 Nov; 106(3):351-366. PubMed ID: 28795788 [TBL] [Abstract][Full Text] [Related]
42. Differential expression of genes influenced by changing salinity using RNA arbitrarily primed PCR in the archaeal halophile Haloferax volcanii. Bidle KA Extremophiles; 2003 Feb; 7(1):1-7. PubMed ID: 12579374 [TBL] [Abstract][Full Text] [Related]
43. Junction phosphate is derived from the precursor in the tRNA spliced by the archaeon Haloferax volcanii cell extract. Zofallova L; Guo Y; Gupta R RNA; 2000 Jul; 6(7):1019-30. PubMed ID: 10917597 [TBL] [Abstract][Full Text] [Related]
44. Haloferax volcanii PitA: an example of functional interaction between the Pfam chlorite dismutase and antibiotic biosynthesis monooxygenase families? Bab-Dinitz E; Shmuely H; Maupin-Furlow J; Eichler J; Shaanan B Bioinformatics; 2006 Mar; 22(6):671-5. PubMed ID: 16403788 [TBL] [Abstract][Full Text] [Related]
45. RNase II regulates RNase PH and is essential for cell survival during starvation and stationary phase. Sulthana S; Quesada E; Deutscher MP RNA; 2017 Sep; 23(9):1456-1464. PubMed ID: 28625967 [TBL] [Abstract][Full Text] [Related]
46. Unique recognition style of tRNA(Leu) by Haloferax volcanii leucyl-tRNA synthetase. Soma A; Uchiyama K; Sakamoto T; Maeda M; Himeno H J Mol Biol; 1999 Nov; 293(5):1029-38. PubMed ID: 10547283 [TBL] [Abstract][Full Text] [Related]
47. 5'-to-3' exoribonuclease activity in bacteria: role of RNase J1 in rRNA maturation and 5' stability of mRNA. Mathy N; Bénard L; Pellegrini O; Daou R; Wen T; Condon C Cell; 2007 May; 129(4):681-92. PubMed ID: 17512403 [TBL] [Abstract][Full Text] [Related]
48. Crystal structure of the tRNA processing enzyme RNase PH from Aquifex aeolicus. Ishii R; Nureki O; Yokoyama S J Biol Chem; 2003 Aug; 278(34):32397-404. PubMed ID: 12746447 [TBL] [Abstract][Full Text] [Related]
49. Characterization of acetohydroxy acid synthase activity in the archaeon Haloferax volcanii. Vyazmensky M; Barak Z; Chipman DM; Eichler J Comp Biochem Physiol B Biochem Mol Biol; 2000 Feb; 125(2):205-10. PubMed ID: 10817907 [TBL] [Abstract][Full Text] [Related]
50. The rnb gene of Synechocystis PCC6803 encodes a RNA hydrolase displaying RNase II and not RNase R enzymatic properties. Matos RG; Fialho AM; Giloh M; Schuster G; Arraiano CM PLoS One; 2012; 7(3):e32690. PubMed ID: 22403697 [TBL] [Abstract][Full Text] [Related]
51. Sequence-specific RNA binding mediated by the RNase PH domain of components of the exosome. Anderson JR; Mukherjee D; Muthukumaraswamy K; Moraes KC; Wilusz CJ; Wilusz J RNA; 2006 Oct; 12(10):1810-6. PubMed ID: 16912217 [TBL] [Abstract][Full Text] [Related]
52. tRNA-like elements in Haloferax volcanii. Hölzle A; Stoll B; Schnattinger T; Schöning U; Tjaden B; Marchfelder A Biochimie; 2012 Apr; 94(4):940-6. PubMed ID: 22178322 [TBL] [Abstract][Full Text] [Related]
53. Major 3'-5' Exoribonucleases in the Metabolism of Coding and Non-coding RNA. Dos Santos RF; Quendera AP; Boavida S; Seixas AF; Arraiano CM; Andrade JM Prog Mol Biol Transl Sci; 2018; 159():101-155. PubMed ID: 30340785 [TBL] [Abstract][Full Text] [Related]
54. RNase R is associated in a functional complex with the RhpA DEAD-box RNA helicase in Helicobacter pylori. Tejada-Arranz A; Matos RG; Quentin Y; Bouilloux-Lafont M; Galtier E; Briolat V; Kornobis E; Douché T; Matondo M; Arraiano CM; Raynal B; De Reuse H Nucleic Acids Res; 2021 May; 49(9):5249-5264. PubMed ID: 33893809 [TBL] [Abstract][Full Text] [Related]
55. Identification and characterization of 2-keto-3-deoxygluconate kinase and 2-keto-3-deoxygalactonate kinase in the haloarchaeon Haloferax volcanii. Pickl A; Johnsen U; Archer RM; Schönheit P FEMS Microbiol Lett; 2014 Dec; 361(1):76-83. PubMed ID: 25287957 [TBL] [Abstract][Full Text] [Related]
56. The reaction mechanism of ribonuclease II and its interaction with nucleic acid secondary structures. Cannistraro VJ; Kennell D Biochim Biophys Acta; 1999 Aug; 1433(1-2):170-87. PubMed ID: 10446370 [TBL] [Abstract][Full Text] [Related]
57. Molecular mechanism of RNase R substrate sensitivity for RNA ribose methylation. Abula A; Li X; Quan X; Yang T; Liu Y; Guo H; Li T; Ji X Nucleic Acids Res; 2021 May; 49(8):4738-4749. PubMed ID: 33788943 [TBL] [Abstract][Full Text] [Related]
58. Engineering substrate promiscuity in halophilic alcohol dehydrogenase (HvADH2) by in silico design. Cassidy J; Bruen L; Rosini E; Molla G; Pollegioni L; Paradisi F PLoS One; 2017; 12(11):e0187482. PubMed ID: 29190711 [TBL] [Abstract][Full Text] [Related]
59. The physiological role of RNase T can be explained by its unusual substrate specificity. Zuo Y; Deutscher MP J Biol Chem; 2002 Aug; 277(33):29654-61. PubMed ID: 12050169 [TBL] [Abstract][Full Text] [Related]
60. Ionic strength-dependent conformations of a ubiquitin-like small archaeal modifier protein (SAMP2) from Haloferax volcanii. Liao S; Zhang W; Fan K; Ye K; Zhang X; Zhang J; Xu C; Tu X Sci Rep; 2013; 3():2136. PubMed ID: 23823798 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]