These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 22705714)

  • 1. The temporal analysis of yeast exponential phase using shotgun proteomics as a fermentation monitoring technique.
    Huang EL; Orsat V; Shah MB; Hettich RL; VerBerkmoes NC; Lefsrud MG
    J Proteomics; 2012 Sep; 75(17):5206-14. PubMed ID: 22705714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stuck at work? Quantitative proteomics of environmental wine yeast strains reveals the natural mechanism of overcoming stuck fermentation.
    Szopinska A; Christ E; Planchon S; König H; Evers D; Renaut J
    Proteomics; 2016 Feb; 16(4):593-608. PubMed ID: 26763469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The proteomic response of Saccharomyces cerevisiae in very high glucose conditions with amino acid supplementation.
    Pham TK; Wright PC
    J Proteome Res; 2008 Nov; 7(11):4766-74. PubMed ID: 18808174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal quantitative proteomics of Saccharomyces cerevisiae in response to a nonlethal concentration of furfural.
    Lin FM; Tan Y; Yuan YJ
    Proteomics; 2009 Dec; 9(24):5471-83. PubMed ID: 19834894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temporal analysis of xylose fermentation by Scheffersomyces stipitis using shotgun proteomics.
    Huang EL; Lefsrud MG
    J Ind Microbiol Biotechnol; 2012 Oct; 39(10):1507-14. PubMed ID: 22638791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Preliminary proteome analysis for Saccharomyces cerevisiae under different culturing conditions].
    Zhang HM; Yao SJ; Peng LF; Shimizu K
    Sheng Wu Gong Cheng Xue Bao; 2004 May; 20(3):398-402. PubMed ID: 15971613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteomic analysis reveals complex metabolic regulation in Saccharomyces cerevisiae cells against multiple inhibitors stress.
    Lv YJ; Wang X; Ma Q; Bai X; Li BZ; Zhang W; Yuan YJ
    Appl Microbiol Biotechnol; 2014 Mar; 98(5):2207-21. PubMed ID: 24442506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A proteomic view of Candida albicans yeast cell metabolism in exponential and stationary growth phases.
    Kusch H; Engelmann S; Bode R; Albrecht D; Morschhäuser J; Hecker M
    Int J Med Microbiol; 2008 Apr; 298(3-4):291-318. PubMed ID: 17588813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. System-wide perturbation analysis with nearly complete coverage of the yeast proteome by single-shot ultra HPLC runs on a bench top Orbitrap.
    Nagaraj N; Kulak NA; Cox J; Neuhauser N; Mayr K; Hoerning O; Vorm O; Mann M
    Mol Cell Proteomics; 2012 Mar; 11(3):M111.013722. PubMed ID: 22021278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative proteome analysis of robust Saccharomyces cerevisiae insights into industrial continuous and batch fermentation.
    Cheng JS; Qiao B; Yuan YJ
    Appl Microbiol Biotechnol; 2008 Nov; 81(2):327-38. PubMed ID: 18923828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of different glucose concentrations on proteome of Saccharomyces cerevisiae.
    Guidi F; Magherini F; Gamberi T; Borro M; Simmaco M; Modesti A
    Biochim Biophys Acta; 2010 Jul; 1804(7):1516-25. PubMed ID: 20362699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteomic analysis of Saccharomyces cerevisiae under high gravity fermentation conditions.
    Pham TK; Chong PK; Gan CS; Wright PC
    J Proteome Res; 2006 Dec; 5(12):3411-9. PubMed ID: 17137342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of SCO1 deletion on Saccharomyces cerevisiae metabolism through a proteomic approach.
    Gamberi T; Puglia M; Bianchi L; Gimigliano A; Landi C; Magherini F; Guidi F; Ranaldi F; Armini A; Cipriano M; Gagliardi A; Modesti A; Bini L
    Proteomics; 2012 Jun; 12(11):1767-80. PubMed ID: 22623105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomic analysis of calcium alginate-immobilized Saccharomyces cerevisiae under high-gravity fermentation conditions.
    Pham TK; Wright PC
    J Proteome Res; 2008 Feb; 7(2):515-25. PubMed ID: 18171021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteome-wide quantitative multiplexed profiling of protein expression: carbon-source dependency in Saccharomyces cerevisiae.
    Paulo JA; O'Connell JD; Gaun A; Gygi SP
    Mol Biol Cell; 2015 Nov; 26(22):4063-74. PubMed ID: 26399295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential Proteome Analysis of a Flor Yeast Strain under Biofilm Formation.
    Moreno-García J; Mauricio JC; Moreno J; García-Martínez T
    Int J Mol Sci; 2017 Mar; 18(4):. PubMed ID: 28350350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteomic evolution of a wine yeast during the first hours of fermentation.
    Salvadó Z; Chiva R; Rodríguez-Vargas S; Rández-Gil F; Mas A; Guillamón JM
    FEMS Yeast Res; 2008 Nov; 8(7):1137-46. PubMed ID: 18503542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomics: where's Waldo in yeast?
    Wohlschlegel JA; Yates JR
    Nature; 2003 Oct; 425(6959):671-2. PubMed ID: 14562083
    [No Abstract]   [Full Text] [Related]  

  • 19. Inoculation-density-dependent responses and pathway shifts in Saccharomyces cerevisiae.
    Cheng JS; Ding MZ; Tian HC; Yuan YJ
    Proteomics; 2009 Oct; 9(20):4704-13. PubMed ID: 19743421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomic insights into adaptive responses of Saccharomyces cerevisiae to the repeated vacuum fermentation.
    Cheng JS; Zhou X; Ding MZ; Yuan YJ
    Appl Microbiol Biotechnol; 2009 Jul; 83(5):909-23. PubMed ID: 19488749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.