BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 22705714)

  • 1. The temporal analysis of yeast exponential phase using shotgun proteomics as a fermentation monitoring technique.
    Huang EL; Orsat V; Shah MB; Hettich RL; VerBerkmoes NC; Lefsrud MG
    J Proteomics; 2012 Sep; 75(17):5206-14. PubMed ID: 22705714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stuck at work? Quantitative proteomics of environmental wine yeast strains reveals the natural mechanism of overcoming stuck fermentation.
    Szopinska A; Christ E; Planchon S; König H; Evers D; Renaut J
    Proteomics; 2016 Feb; 16(4):593-608. PubMed ID: 26763469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The proteomic response of Saccharomyces cerevisiae in very high glucose conditions with amino acid supplementation.
    Pham TK; Wright PC
    J Proteome Res; 2008 Nov; 7(11):4766-74. PubMed ID: 18808174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal quantitative proteomics of Saccharomyces cerevisiae in response to a nonlethal concentration of furfural.
    Lin FM; Tan Y; Yuan YJ
    Proteomics; 2009 Dec; 9(24):5471-83. PubMed ID: 19834894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temporal analysis of xylose fermentation by Scheffersomyces stipitis using shotgun proteomics.
    Huang EL; Lefsrud MG
    J Ind Microbiol Biotechnol; 2012 Oct; 39(10):1507-14. PubMed ID: 22638791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Preliminary proteome analysis for Saccharomyces cerevisiae under different culturing conditions].
    Zhang HM; Yao SJ; Peng LF; Shimizu K
    Sheng Wu Gong Cheng Xue Bao; 2004 May; 20(3):398-402. PubMed ID: 15971613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteomic analysis reveals complex metabolic regulation in Saccharomyces cerevisiae cells against multiple inhibitors stress.
    Lv YJ; Wang X; Ma Q; Bai X; Li BZ; Zhang W; Yuan YJ
    Appl Microbiol Biotechnol; 2014 Mar; 98(5):2207-21. PubMed ID: 24442506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A proteomic view of Candida albicans yeast cell metabolism in exponential and stationary growth phases.
    Kusch H; Engelmann S; Bode R; Albrecht D; Morschhäuser J; Hecker M
    Int J Med Microbiol; 2008 Apr; 298(3-4):291-318. PubMed ID: 17588813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. System-wide perturbation analysis with nearly complete coverage of the yeast proteome by single-shot ultra HPLC runs on a bench top Orbitrap.
    Nagaraj N; Kulak NA; Cox J; Neuhauser N; Mayr K; Hoerning O; Vorm O; Mann M
    Mol Cell Proteomics; 2012 Mar; 11(3):M111.013722. PubMed ID: 22021278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative proteome analysis of robust Saccharomyces cerevisiae insights into industrial continuous and batch fermentation.
    Cheng JS; Qiao B; Yuan YJ
    Appl Microbiol Biotechnol; 2008 Nov; 81(2):327-38. PubMed ID: 18923828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of different glucose concentrations on proteome of Saccharomyces cerevisiae.
    Guidi F; Magherini F; Gamberi T; Borro M; Simmaco M; Modesti A
    Biochim Biophys Acta; 2010 Jul; 1804(7):1516-25. PubMed ID: 20362699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteomic analysis of Saccharomyces cerevisiae under high gravity fermentation conditions.
    Pham TK; Chong PK; Gan CS; Wright PC
    J Proteome Res; 2006 Dec; 5(12):3411-9. PubMed ID: 17137342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of SCO1 deletion on Saccharomyces cerevisiae metabolism through a proteomic approach.
    Gamberi T; Puglia M; Bianchi L; Gimigliano A; Landi C; Magherini F; Guidi F; Ranaldi F; Armini A; Cipriano M; Gagliardi A; Modesti A; Bini L
    Proteomics; 2012 Jun; 12(11):1767-80. PubMed ID: 22623105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomic analysis of calcium alginate-immobilized Saccharomyces cerevisiae under high-gravity fermentation conditions.
    Pham TK; Wright PC
    J Proteome Res; 2008 Feb; 7(2):515-25. PubMed ID: 18171021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteome-wide quantitative multiplexed profiling of protein expression: carbon-source dependency in Saccharomyces cerevisiae.
    Paulo JA; O'Connell JD; Gaun A; Gygi SP
    Mol Biol Cell; 2015 Nov; 26(22):4063-74. PubMed ID: 26399295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential Proteome Analysis of a Flor Yeast Strain under Biofilm Formation.
    Moreno-García J; Mauricio JC; Moreno J; García-Martínez T
    Int J Mol Sci; 2017 Mar; 18(4):. PubMed ID: 28350350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteomic evolution of a wine yeast during the first hours of fermentation.
    Salvadó Z; Chiva R; Rodríguez-Vargas S; Rández-Gil F; Mas A; Guillamón JM
    FEMS Yeast Res; 2008 Nov; 8(7):1137-46. PubMed ID: 18503542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomics: where's Waldo in yeast?
    Wohlschlegel JA; Yates JR
    Nature; 2003 Oct; 425(6959):671-2. PubMed ID: 14562083
    [No Abstract]   [Full Text] [Related]  

  • 19. Inoculation-density-dependent responses and pathway shifts in Saccharomyces cerevisiae.
    Cheng JS; Ding MZ; Tian HC; Yuan YJ
    Proteomics; 2009 Oct; 9(20):4704-13. PubMed ID: 19743421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomic insights into adaptive responses of Saccharomyces cerevisiae to the repeated vacuum fermentation.
    Cheng JS; Zhou X; Ding MZ; Yuan YJ
    Appl Microbiol Biotechnol; 2009 Jul; 83(5):909-23. PubMed ID: 19488749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.