These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 22705874)
1. Modeling the transmission dynamics of dengue fever: implications of temperature effects. Chen SC; Hsieh MH Sci Total Environ; 2012 Aug; 431():385-91. PubMed ID: 22705874 [TBL] [Abstract][Full Text] [Related]
2. Follow up estimation of Aedes aegypti entomological parameters and mathematical modellings. Yang HM; Macoris Mde L; Galvani KC; Andrighetti MT Biosystems; 2011 Mar; 103(3):360-71. PubMed ID: 21093536 [TBL] [Abstract][Full Text] [Related]
3. Modelling the effect of temperature on transmission of dengue. Barbazan P; Guiserix M; Boonyuan W; Tuntaprasart W; Pontier D; Gonzalez JP Med Vet Entomol; 2010 Mar; 24(1):66-73. PubMed ID: 20377733 [TBL] [Abstract][Full Text] [Related]
4. Assessing the effects of temperature on dengue transmission. Yang HM; Macoris ML; Galvani KC; Andrighetti MT; Wanderley DM Epidemiol Infect; 2009 Aug; 137(8):1179-87. PubMed ID: 19192323 [TBL] [Abstract][Full Text] [Related]
5. Assessing the effects of temperature on the population of Aedes aegypti, the vector of dengue. Yang HM; Macoris ML; Galvani KC; Andrighetti MT; Wanderley DM Epidemiol Infect; 2009 Aug; 137(8):1188-202. PubMed ID: 19192322 [TBL] [Abstract][Full Text] [Related]
6. Stochastic eco-epidemiological model of dengue disease transmission by Aedes aegypti mosquito. Otero M; Solari HG Math Biosci; 2010 Jan; 223(1):32-46. PubMed ID: 19861133 [TBL] [Abstract][Full Text] [Related]
7. Spatiotemporal patterns of Aedes aegypti populations in Cairns, Australia: assessing drivers of dengue transmission. Duncombe J; Clements A; Davis J; Hu W; Weinstein P; Ritchie S Trop Med Int Health; 2013 Jul; 18(7):839-49. PubMed ID: 23617766 [TBL] [Abstract][Full Text] [Related]
8. Larval occurrence, oviposition behavior and biting activity of potential mosquito vectors of dengue on Samui Island, Thailand. Thavara U; Tawatsin A; Chansang C; Kong-ngamsuk W; Paosriwong S; Boon-Long J; Rongsriyam Y; Komalamisra N J Vector Ecol; 2001 Dec; 26(2):172-80. PubMed ID: 11813654 [TBL] [Abstract][Full Text] [Related]
9. Lagged temperature effect with mosquito transmission potential explains dengue variability in southern Taiwan: insights from a statistical analysis. Chen SC; Liao CM; Chio CP; Chou HH; You SH; Cheng YH Sci Total Environ; 2010 Sep; 408(19):4069-75. PubMed ID: 20542536 [TBL] [Abstract][Full Text] [Related]
10. Time-specific ecological niche modeling predicts spatial dynamics of vector insects and human dengue cases. Peterson AT; Martínez-Campos C; Nakazawa Y; Martínez-Meyer E Trans R Soc Trop Med Hyg; 2005 Sep; 99(9):647-55. PubMed ID: 15979656 [TBL] [Abstract][Full Text] [Related]
11. [Impact on the potential epidemic of dengue fever under warming winter in Hainan province]. Yu SX; Li ZQ; Teng WP; Cai J Zhonghua Liu Xing Bing Xue Za Zhi; 2005 Jan; 26(1):25-8. PubMed ID: 15921588 [TBL] [Abstract][Full Text] [Related]
12. A stochastic population dynamics model for Aedes aegypti: formulation and application to a city with temperate climate. Otero M; Solari HG; Schweigmann N Bull Math Biol; 2006 Nov; 68(8):1945-74. PubMed ID: 16832731 [TBL] [Abstract][Full Text] [Related]
13. Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti. McMeniman CJ; Lane RV; Cass BN; Fong AW; Sidhu M; Wang YF; O'Neill SL Science; 2009 Jan; 323(5910):141-4. PubMed ID: 19119237 [TBL] [Abstract][Full Text] [Related]
14. [Aedes aegypti (L.): importance of its bioecology in the transmission of dengue and other arboviruses. I]. Dégallier N; Hervé JP; Travassos da Rosa AP; Sa GC Bull Soc Pathol Exot Filiales; 1988; 81(1):97-110. PubMed ID: 3042180 [TBL] [Abstract][Full Text] [Related]
15. A potential risk assessment of a dengue outbreak in north central Texas, USA. (Part 1 of 2): Abundance and temporal variation of dengue vectors. Lee JH; Stahl M; Sawlis S; Suzuki S; Lee JH J Environ Health; 2009 Jun; 71(10):24-9. PubMed ID: 19537644 [TBL] [Abstract][Full Text] [Related]
16. Threshold conditions for a non-autonomous epidemic system describing the population dynamics of dengue. Coutinho FA; Burattini MN; Lopez LF; Massad E Bull Math Biol; 2006 Nov; 68(8):2263-82. PubMed ID: 16952019 [TBL] [Abstract][Full Text] [Related]
17. Distribution and seasonality of vertically transmitted dengue viruses in Aedes mosquitoes in arid and semi-arid areas of Rajasthan, India. Angel B; Joshi V J Vector Borne Dis; 2008 Mar; 45(1):56-9. PubMed ID: 18399318 [TBL] [Abstract][Full Text] [Related]
18. A lethal ovitrap-based mass trapping scheme for dengue control in Australia: II. Impact on populations of the mosquito Aedes aegypti. Rapley LP; Johnson PH; Williams CR; Silcock RM; Larkman M; Long SA; Russell RC; Ritchie SA Med Vet Entomol; 2009 Dec; 23(4):303-16. PubMed ID: 19941596 [TBL] [Abstract][Full Text] [Related]
19. Transmission thresholds for dengue in terms of Aedes aegypti pupae per person with discussion of their utility in source reduction efforts. Focks DA; Brenner RJ; Hayes J; Daniels E Am J Trop Med Hyg; 2000 Jan; 62(1):11-8. PubMed ID: 10761719 [TBL] [Abstract][Full Text] [Related]
20. [The role of the Aedes aegypti vector in the epidemiology of dengue in Mexico]. Fernández-Salas I; Flores-Leal A Salud Publica Mex; 1995; 37 Suppl():S45-52. PubMed ID: 8599147 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]