BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 22705879)

  • 21. Expression and regulation of genes encoding lignocellulose-degrading activity in the genus Phanerochaete.
    MacDonald J; Suzuki H; Master ER
    Appl Microbiol Biotechnol; 2012 Apr; 94(2):339-51. PubMed ID: 22391967
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulation of Gene Expression during the Onset of Ligninolytic Oxidation by Phanerochaete chrysosporium on Spruce Wood.
    Korripally P; Hunt CG; Houtman CJ; Jones DC; Kitin PJ; Cullen D; Hammel KE
    Appl Environ Microbiol; 2015 Nov; 81(22):7802-12. PubMed ID: 26341198
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Induction of functional cytochrome P450 and its involvement in degradation of benzoic acid by Phanerochaete chrysosporium.
    Ning D; Wang H; Zhuang Y
    Biodegradation; 2010 Apr; 21(2):297-308. PubMed ID: 19787435
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion.
    Martinez D; Challacombe J; Morgenstern I; Hibbett D; Schmoll M; Kubicek CP; Ferreira P; Ruiz-Duenas FJ; Martinez AT; Kersten P; Hammel KE; Vanden Wymelenberg A; Gaskell J; Lindquist E; Sabat G; Bondurant SS; Larrondo LF; Canessa P; Vicuna R; Yadav J; Doddapaneni H; Subramanian V; Pisabarro AG; Lavín JL; Oguiza JA; Master E; Henrissat B; Coutinho PM; Harris P; Magnuson JK; Baker SE; Bruno K; Kenealy W; Hoegger PJ; Kües U; Ramaiya P; Lucas S; Salamov A; Shapiro H; Tu H; Chee CL; Misra M; Xie G; Teter S; Yaver D; James T; Mokrejs M; Pospisek M; Grigoriev IV; Brettin T; Rokhsar D; Berka R; Cullen D
    Proc Natl Acad Sci U S A; 2009 Feb; 106(6):1954-9. PubMed ID: 19193860
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Wood stimulates the demethoxylation of [O14CH3]-labeled lignin model compounds by the white-rot fungi Phanerochaete chrysosporium and Phlebia radiata.
    Niemenmaa O; Uusi-Rauva A; Hatakka A
    Arch Microbiol; 2006 May; 185(4):307-15. PubMed ID: 16502311
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cloning and characterization of the genes encoding the high-affinity iron-uptake protein complex Fet3/Ftr1 in the basidiomycete Phanerochaete chrysosporium.
    Larrondo LF; Canessa P; Melo F; Polanco R; Vicuña R
    Microbiology (Reading); 2007 Jun; 153(Pt 6):1772-1780. PubMed ID: 17526834
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fungal pretreatment of lignocellulose by Phanerochaete chrysosporium to produce ethanol from rice straw.
    Bak JS; Ko JK; Choi IG; Park YC; Seo JH; Kim KH
    Biotechnol Bioeng; 2009 Oct; 104(3):471-82. PubMed ID: 19591194
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Novel promoter sequence required for manganese regulation of manganese peroxidase isozyme 1 gene expression in Phanerochaete chrysosporium.
    Ma B; Mayfield MB; Godfrey BJ; Gold MH
    Eukaryot Cell; 2004 Jun; 3(3):579-88. PubMed ID: 15189980
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Two glucuronoyl esterases of Phanerochaete chrysosporium.
    Duranová M; Spániková S; Wösten HA; Biely P; de Vries RP
    Arch Microbiol; 2009 Feb; 191(2):133-40. PubMed ID: 18854978
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mycelial growth and solid-state fermentation of lignocellulosic waste by white-rot fungus Phanerochaete chrysosporium under lead stress.
    Huang DL; Zeng GM; Feng CL; Hu S; Zhao MH; Lai C; Zhang Y; Jiang XY; Liu HL
    Chemosphere; 2010 Nov; 81(9):1091-7. PubMed ID: 20951406
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improvement of ligninolytic properties by recombinant expression of glyoxal oxidase gene in hyper lignin-degrading fungus Phanerochaete sordida YK-624.
    Yamada Y; Wang J; Kawagishi H; Hirai H
    Biosci Biotechnol Biochem; 2014; 78(12):2128-33. PubMed ID: 25117933
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The first genome-level transcriptome of the wood-degrading fungus Phanerochaete chrysosporium grown on red oak.
    Sato S; Feltus FA; Iyer P; Tien M
    Curr Genet; 2009 Jun; 55(3):273-86. PubMed ID: 19396602
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An in silico analysis of cytochrome c from Phanerochaete chrysosporium: its amino acid sequence and characterization of gene structural elements.
    Bumpus JA; Trax M; Reisdorph A; Boyd C; Gilbert D; Techau S; Ventullo RM
    In Silico Biol; 2008; 8(1):1-13. PubMed ID: 18430985
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lignocellulose depolymerization occurs via an environmentally adapted metabolic cascades in the wood-rotting basidiomycete Phanerochaete chrysosporium.
    Bak JS
    Microbiologyopen; 2015 Feb; 4(1):151-66. PubMed ID: 25470354
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gene expression metadata analysis reveals molecular mechanisms employed by Phanerochaete chrysosporium during lignin degradation and detoxification of plant extractives.
    Kameshwar AKS; Qin W
    Curr Genet; 2017 Oct; 63(5):877-894. PubMed ID: 28275822
    [TBL] [Abstract][Full Text] [Related]  

  • 36. P450 monooxygenases (P450ome) of the model white rot fungus Phanerochaete chrysosporium.
    Syed K; Yadav JS
    Crit Rev Microbiol; 2012 Nov; 38(4):339-63. PubMed ID: 22624627
    [TBL] [Abstract][Full Text] [Related]  

  • 37. SRE1 regulates iron-dependent and -independent pathways in the fungal pathogen Histoplasma capsulatum.
    Hwang LH; Seth E; Gilmore SA; Sil A
    Eukaryot Cell; 2012 Jan; 11(1):16-25. PubMed ID: 22117028
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Secretome analysis of Phanerochaete chrysosporium strain CIRM-BRFM41 grown on softwood.
    Ravalason H; Jan G; Mollé D; Pasco M; Coutinho PM; Lapierre C; Pollet B; Bertaud F; Petit-Conil M; Grisel S; Sigoillot JC; Asther M; Herpoël-Gimbert I
    Appl Microbiol Biotechnol; 2008 Sep; 80(4):719-33. PubMed ID: 18654772
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Agrobacterium-mediated delivery of marker genes to Phanerochaete chrysosporium mycelial pellets: a model transformation system for white-rot fungi.
    Sharma KK; Gupta S; Kuhad RC
    Biotechnol Appl Biochem; 2006 Mar; 43(Pt 3):181-6. PubMed ID: 16302847
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metabolism of 4,4'-dichlorobiphenyl by white-rot fungi Phanerochaete chrysosporium and Phanerochaete sp. MZ142.
    Kamei I; Kogura R; Kondo R
    Appl Microbiol Biotechnol; 2006 Sep; 72(3):566-75. PubMed ID: 16528513
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.