BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 22705958)

  • 1. High-yield production of meso-2,3-butanediol from cellodextrin by engineered E. coli biocatalysts.
    Shin HD; Yoon SH; Wu J; Rutter C; Kim SW; Chen RR
    Bioresour Technol; 2012 Aug; 118():367-73. PubMed ID: 22705958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Periplasmic expression of a Saccharophagus cellodextrinase enables E. coli to ferment cellodextrin.
    Rutter C; Mao Z; Chen R
    Appl Microbiol Biotechnol; 2013 Sep; 97(18):8129-38. PubMed ID: 23306638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial production of 2,3 butanediol from seaweed hydrolysate using metabolically engineered Escherichia coli.
    Mazumdar S; Lee J; Oh MK
    Bioresour Technol; 2013 May; 136():329-36. PubMed ID: 23567699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of pure meso-2,3-butanediol from crude glycerol using an engineered metabolic pathway in Escherichia coli.
    Lee S; Kim B; Park K; Um Y; Lee J
    Appl Biochem Biotechnol; 2012 Apr; 166(7):1801-13. PubMed ID: 22434350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a commercial scale process for production of 1,4-butanediol from sugar.
    Burgard A; Burk MJ; Osterhout R; Van Dien S; Yim H
    Curr Opin Biotechnol; 2016 Dec; 42():118-125. PubMed ID: 27132123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved cellobiose utilization in E. coli by including both hydrolysis and phosphorolysis mechanisms.
    Rutter C; Chen R
    Biotechnol Lett; 2014 Feb; 36(2):301-7. PubMed ID: 24101240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic Engineering of
    Liu Y; Cen X; Liu D; Chen Z
    ACS Synth Biol; 2021 Aug; 10(8):1946-1955. PubMed ID: 34264647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increasing ATP turnover boosts productivity of 2,3-butanediol synthesis in Escherichia coli.
    Boecker S; Harder BJ; Kutscha R; Pflügl S; Klamt S
    Microb Cell Fact; 2021 Mar; 20(1):63. PubMed ID: 33750397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Directed evolution of a cellodextrin transporter for improved biofuel production under anaerobic conditions in Saccharomyces cerevisiae.
    Lian J; Li Y; HamediRad M; Zhao H
    Biotechnol Bioeng; 2014 Aug; 111(8):1521-31. PubMed ID: 24519319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A paradigm shift in biomass technology from complete to partial cellulose hydrolysis: lessons learned from nature.
    Chen R
    Bioengineered; 2015; 6(2):69-72. PubMed ID: 25587851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Constructing a synthetic constitutive metabolic pathway in Escherichia coli for (R, R)-2,3-butanediol production.
    Tong YJ; Ji XJ; Shen MQ; Liu LG; Nie ZK; Huang H
    Appl Microbiol Biotechnol; 2016 Jan; 100(2):637-47. PubMed ID: 26428232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 2,3-butanediol production from cellobiose by engineered Saccharomyces cerevisiae.
    Nan H; Seo SO; Oh EJ; Seo JH; Cate JH; Jin YS
    Appl Microbiol Biotechnol; 2014 Jun; 98(12):5757-64. PubMed ID: 24743979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining CRISPR and CRISPRi Systems for Metabolic Engineering of E. coli and 1,4-BDO Biosynthesis.
    Wu MY; Sung LY; Li H; Huang CH; Hu YC
    ACS Synth Biol; 2017 Dec; 6(12):2350-2361. PubMed ID: 28854333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid and stable production of 2,3-butanediol by an engineered Saccharomyces cerevisiae strain in a continuous airlift bioreactor.
    Yamada R; Nishikawa R; Wakita K; Ogino H
    J Ind Microbiol Biotechnol; 2018 May; 45(5):305-311. PubMed ID: 29605870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering of a butyraldehyde dehydrogenase of Clostridium saccharoperbutylacetonicum to fit an engineered 1,4-butanediol pathway in Escherichia coli.
    Hwang HJ; Park JH; Kim JH; Kong MK; Kim JW; Park JW; Cho KM; Lee PC
    Biotechnol Bioeng; 2014 Jul; 111(7):1374-84. PubMed ID: 24449476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of cellodextrin transporters from Neurospora crassa in Saccharomyces cerevisiae for cellobiose fermentation.
    Kim H; Lee WH; Galazka JM; Cate JH; Jin YS
    Appl Microbiol Biotechnol; 2014 Feb; 98(3):1087-94. PubMed ID: 24190499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enantiopure meso-2,3-butanediol production by metabolically engineered Saccharomyces cerevisiae expressing 2,3-butanediol dehydrogenase from Klebsiella oxytoca.
    Lee YG; Bae JM; Kim SJ
    J Biotechnol; 2022 Aug; 354():1-9. PubMed ID: 35644291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In silico and in vivo stability analysis of a heterologous biosynthetic pathway for 1,4-butanediol production in metabolically engineered E. coli.
    Miklóssy I; Bodor Z; Sinkler R; Orbán KC; Lányi S; Albert B
    J Biomol Struct Dyn; 2017 Jul; 35(9):1874-1889. PubMed ID: 27492654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R,3R)-butanediol.
    Lian J; Chao R; Zhao H
    Metab Eng; 2014 May; 23():92-9. PubMed ID: 24525332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic engineering of Escherichia coli for biological production of 1, 3-Butanediol.
    Islam T; Nguyen-Vo TP; Gaur VK; Lee J; Park S
    Bioresour Technol; 2023 May; 376():128911. PubMed ID: 36934906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.