These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 22705960)

  • 1. Pyrolysis and combustion kinetics of date palm biomass using thermogravimetric analysis.
    Sait HH; Hussain A; Salema AA; Ani FN
    Bioresour Technol; 2012 Aug; 118():382-9. PubMed ID: 22705960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-isothermal thermogravimetric analysis of oil-palm solid wastes.
    Luangkiattikhun P; Tangsathitkulchai C; Tangsathitkulchai M
    Bioresour Technol; 2008 Mar; 99(5):986-97. PubMed ID: 17451942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combustion characteristics of Malaysian oil palm biomass, sub-bituminous coal and their respective blends via thermogravimetric analysis (TGA).
    Idris SS; Rahman NA; Ismail K
    Bioresour Technol; 2012 Nov; 123():581-91. PubMed ID: 22944493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomass pyrolysis and combustion integral and differential reaction heats with temperatures using thermogravimetric analysis/differential scanning calorimetry.
    Shen J; Igathinathane C; Yu M; Pothula AK
    Bioresour Technol; 2015 Jun; 185():89-98. PubMed ID: 25756207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pyrolysis kinetics of hazelnut husk using thermogravimetric analysis.
    Ceylan S; Topçu Y
    Bioresour Technol; 2014 Mar; 156():182-8. PubMed ID: 24508656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative study on pyrolysis of lignocellulosic and algal biomass using a thermogravimetric and a fixed-bed reactor.
    Yuan T; Tahmasebi A; Yu J
    Bioresour Technol; 2015 Jan; 175():333-41. PubMed ID: 25459840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermogravimetric and kinetic study of Pinyon pine in the various gases.
    Kim SS; Shenoy A; Agblevor FA
    Bioresour Technol; 2014 Mar; 156():297-302. PubMed ID: 24525214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermogravimetric and kinetic analysis of Spirulina wastes under nitrogen and air atmospheres.
    Li L; Zhao N; Fu X; Shao M; Qin S
    Bioresour Technol; 2013 Jul; 140():152-7. PubMed ID: 23693145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of autocatalytic kinetics to obtain composition of lignocellulosic materials.
    Barneto AG; Carmona JA; Alfonso JE; Alcaide LJ
    Bioresour Technol; 2009 Sep; 100(17):3963-73. PubMed ID: 19369063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermogravimetric characteristics and pyrolysis kinetics of alga Sagarssum sp. biomass.
    Kim SS; Ly HV; Kim J; Choi JH; Woo HC
    Bioresour Technol; 2013 Jul; 139():242-8. PubMed ID: 23665684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation on thermochemical behaviour of low rank Malaysian coal, oil palm biomass and their blends during pyrolysis via thermogravimetric analysis (TGA).
    Idris SS; Abd Rahman N; Ismail K; Alias AB; Abd Rashid Z; Aris MJ
    Bioresour Technol; 2010 Jun; 101(12):4584-92. PubMed ID: 20153633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermogravimetric-mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis.
    Sanchez-Silva L; López-González D; Villaseñor J; Sánchez P; Valverde JL
    Bioresour Technol; 2012 Apr; 109():163-72. PubMed ID: 22297048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation on thermochemical behavior of co-pyrolysis between oil-palm solid wastes and paper sludge.
    Lin Y; Ma X; Yu Z; Cao Y
    Bioresour Technol; 2014 Aug; 166():444-50. PubMed ID: 24935005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combustion behavior of different kinds of torrefied biomass and their blends with lignite.
    Toptas A; Yildirim Y; Duman G; Yanik J
    Bioresour Technol; 2015 Feb; 177():328-36. PubMed ID: 25496955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pyrolysis characteristics and kinetics of aquatic biomass using thermogravimetric analyzer.
    Wu K; Liu J; Wu Y; Chen Y; Li Q; Xiao X; Yang M
    Bioresour Technol; 2014 Jul; 163():18-25. PubMed ID: 24768943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ash of palm empty fruit bunch as a natural catalyst for promoting the CO₂ gasification reactivity of biomass char.
    Lahijani P; Zainal ZA; Mohamed AR; Mohammadi M
    Bioresour Technol; 2013 Mar; 132():351-5. PubMed ID: 23195653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal degradation studies and kinetic modeling of cardoon (Cynara cardunculus) pyrolysis using thermogravimetric analysis (TGA).
    Damartzis T; Vamvuka D; Sfakiotakis S; Zabaniotou A
    Bioresour Technol; 2011 May; 102(10):6230-8. PubMed ID: 21398116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pyrolysis of coal, biomass and their blends: performance assessment by thermogravimetric analysis.
    Ferrara F; Orsini A; Plaisant A; Pettinau A
    Bioresour Technol; 2014 Nov; 171():433-41. PubMed ID: 25226060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling of pyrolysis of coal-biomass blends using thermogravimetric analysis.
    Sadhukhan AK; Gupta P; Goyal T; Saha RK
    Bioresour Technol; 2008 Nov; 99(17):8022-6. PubMed ID: 18485697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermogravimetric investigation of hydrochar-lignite co-combustion.
    Liu Z; Quek A; Kent Hoekman S; Srinivasan MP; Balasubramanian R
    Bioresour Technol; 2012 Nov; 123():646-52. PubMed ID: 22960124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.