These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 22705961)

  • 1. Effect of heat-alkaline treatment as a pretreatment method on volatile fatty acid production and protein degradation in excess sludge, pure proteins and pure cultures.
    Tan R; Miyanaga K; Uy D; Tanji Y
    Bioresour Technol; 2012 Aug; 118():390-8. PubMed ID: 22705961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen production and microbial diversity in sewage sludge fermentation preceded by heat and alkaline treatment.
    Kang JH; Kim D; Lee TJ
    Bioresour Technol; 2012 Apr; 109():239-43. PubMed ID: 22306077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous bioproduction of short-chain fatty acids from sludge enhanced by the combined use of surfactant and alkaline pH.
    Chen Y; Liu K; Su Y; Zheng X; Wang Q
    Bioresour Technol; 2013 Jul; 140():97-102. PubMed ID: 23685363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acidogenic fermentation of proteinaceous sewage sludge: Effect of pH.
    Liu H; Wang J; Liu X; Fu B; Chen J; Yu HQ
    Water Res; 2012 Mar; 46(3):799-807. PubMed ID: 22176743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved volatile fatty acids production from proteins of sewage sludge with anthraquinone-2,6-disulfonate (AQDS) under anaerobic condition.
    Yang X; Du M; Lee DJ; Wan C; Zheng L; Wan F
    Bioresour Technol; 2012 Jan; 103(1):494-7. PubMed ID: 22047658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrasonic-pretreated waste activated sludge hydrolysis and volatile fatty acid accumulation under alkaline conditions: Effect of temperature.
    Zhuo G; Yan Y; Tan X; Dai X; Zhou Q
    J Biotechnol; 2012 May; 159(1-2):27-31. PubMed ID: 22342599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Short-chain fatty acids production and microbial community in sludge alkaline fermentation: Long-term effect of temperature.
    Yuan Y; Liu Y; Li B; Wang B; Wang S; Peng Y
    Bioresour Technol; 2016 Jul; 211():685-90. PubMed ID: 27060243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal production of polyhydroxyalkanoates (PHA) in activated sludge fed by volatile fatty acids (VFAs) generated from alkaline excess sludge fermentation.
    Mengmeng C; Hong C; Qingliang Z; Shirley SN; Jie R
    Bioresour Technol; 2009 Feb; 100(3):1399-405. PubMed ID: 18945612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Utilization of alkali-tolerant strains in fermentation of excess sludge.
    Jie W; Peng Y; Ren N; Li B
    Bioresour Technol; 2014 Apr; 157():52-9. PubMed ID: 24531147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pyrosequencing reveals the key microorganisms involved in sludge alkaline fermentation for efficient short-chain fatty acids production.
    Zheng X; Su Y; Li X; Xiao N; Wang D; Chen Y
    Environ Sci Technol; 2013 May; 47(9):4262-8. PubMed ID: 23544425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous volatile fatty acid production from waste activated sludge hydrolyzed at pH 12.
    Yang X; Wan C; Lee DJ; Du M; Pan X; Wan F
    Bioresour Technol; 2014 Sep; 168():173-9. PubMed ID: 24630368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of pH in the organic material solubilization of domestic sludge in anaerobic digestion.
    Gomec CY; Speece RE
    Water Sci Technol; 2003; 48(3):143-50. PubMed ID: 14518866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward understanding the mechanism of improving the production of volatile fatty acids from activated sludge at pH 10.0.
    Yu GH; He PJ; Shao LM; He PP
    Water Res; 2008 Nov; 42(18):4637-44. PubMed ID: 18822441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasonic enhancement of waste activated sludge hydrolysis and volatile fatty acids accumulation at pH 10.0.
    Yan Y; Feng L; Zhang C; Wisniewski C; Zhou Q
    Water Res; 2010 Jun; 44(11):3329-36. PubMed ID: 20371095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of volatile fatty acids by fermentation of waste activated sludge pre-treated in full-scale thermal hydrolysis plants.
    Morgan-Sagastume F; Pratt S; Karlsson A; Cirne D; Lant P; Werker A
    Bioresour Technol; 2011 Feb; 102(3):3089-97. PubMed ID: 21075621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding short-chain fatty acids accumulation enhanced in waste activated sludge alkaline fermentation: kinetics and microbiology.
    Zhang P; Chen Y; Zhou Q; Zheng X; Zhu X; Zhao Y
    Environ Sci Technol; 2010 Dec; 44(24):9343-8. PubMed ID: 21105739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inoculation and alkali coeffect in volatile fatty acids production and microbial community shift in the anaerobic fermentation of waste activated sludge.
    Huang L; Chen B; Pistolozzi M; Wu Z; Wang J
    Bioresour Technol; 2014 Feb; 153():87-94. PubMed ID: 24345567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Volatile fatty acids (VFAs) accumulation and microbial community structure of excess sludge (ES) at different pHs.
    Jie W; Peng Y; Ren N; Li B
    Bioresour Technol; 2014; 152():124-9. PubMed ID: 24291313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Free nitrous acid serving as a pretreatment method for alkaline fermentation to enhance short-chain fatty acid production from waste activated sludge.
    Zhao J; Wang D; Li X; Yang Q; Chen H; Zhong Y; Zeng G
    Water Res; 2015 Jul; 78():111-20. PubMed ID: 25935366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.