BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

496 related articles for article (PubMed ID: 22705984)

  • 1. Janus kinase 3-activating mutations identified in natural killer/T-cell lymphoma.
    Koo GC; Tan SY; Tang T; Poon SL; Allen GE; Tan L; Chong SC; Ong WS; Tay K; Tao M; Quek R; Loong S; Yeoh KW; Yap SP; Lee KA; Lim LC; Tan D; Goh C; Cutcutache I; Yu W; Ng CC; Rajasegaran V; Heng HL; Gan A; Ong CK; Rozen S; Tan P; Teh BT; Lim ST
    Cancer Discov; 2012 Jul; 2(7):591-7. PubMed ID: 22705984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activated janus kinase 3 expression not by activating mutations identified in natural killer/T-cell lymphoma.
    Guo Y; Arakawa F; Miyoshi H; Niino D; Kawano R; Ohshima K
    Pathol Int; 2014 Jun; 64(6):263-6. PubMed ID: 24965108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel JAK3-Activating Mutations in Extranodal NK/T-Cell Lymphoma, Nasal Type.
    Sim SH; Kim S; Kim TM; Jeon YK; Nam SJ; Ahn YO; Keam B; Park HH; Kim DW; Kim CW; Heo DS
    Am J Pathol; 2017 May; 187(5):980-986. PubMed ID: 28284718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. JAK3 deregulation by activating mutations confers invasive growth advantage in extranodal nasal-type natural killer cell lymphoma.
    Bouchekioua A; Scourzic L; de Wever O; Zhang Y; Cervera P; Aline-Fardin A; Mercher T; Gaulard P; Nyga R; Jeziorowska D; Douay L; Vainchenker W; Louache F; Gespach C; Solary E; Coppo P
    Leukemia; 2014 Feb; 28(2):338-48. PubMed ID: 23689514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oncogenic activation of JAK3-STAT signaling confers clinical sensitivity to PRN371, a novel selective and potent JAK3 inhibitor, in natural killer/T-cell lymphoma.
    Nairismägi M-; Gerritsen ME; Li ZM; Wijaya GC; Chia BKH; Laurensia Y; Lim JQ; Yeoh KW; Yao XS; Pang WL; Bisconte A; Hill RJ; Bradshaw JM; Huang D; Song TLL; Ng CCY; Rajasegaran V; Tang T; Tang QQ; Xia XJ; Kang TB; Teh BT; Lim ST; Ong CK; Tan J
    Leukemia; 2018 May; 32(5):1147-1156. PubMed ID: 29434279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Jak3, STAT3, and STAT5 inhibit expression of miR-22, a novel tumor suppressor microRNA, in cutaneous T-Cell lymphoma.
    Sibbesen NA; Kopp KL; Litvinov IV; Jønson L; Willerslev-Olsen A; Fredholm S; Petersen DL; Nastasi C; Krejsgaard T; Lindahl LM; Gniadecki R; Mongan NP; Sasseville D; Wasik MA; Iversen L; Bonefeld CM; Geisler C; Woetmann A; Odum N
    Oncotarget; 2015 Aug; 6(24):20555-69. PubMed ID: 26244872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tofacitinib induces G1 cell-cycle arrest and inhibits tumor growth in Epstein-Barr virus-associated T and natural killer cell lymphoma cells.
    Ando S; Kawada JI; Watanabe T; Suzuki M; Sato Y; Torii Y; Asai M; Goshima F; Murata T; Shimizu N; Ito Y; Kimura H
    Oncotarget; 2016 Nov; 7(47):76793-76805. PubMed ID: 27732937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. JAK3/STAT3 oncogenic pathway and PRDM1 expression stratify clinicopathologic features of extranodal NK/T‑cell lymphoma, nasal type.
    Liu J; Liang L; Li D; Nong L; Zheng Y; Huang S; Zhang B; Li T
    Oncol Rep; 2019 Jun; 41(6):3219-3232. PubMed ID: 31002364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EZH2 phosphorylation by JAK3 mediates a switch to noncanonical function in natural killer/T-cell lymphoma.
    Yan J; Li B; Lin B; Lee PT; Chung TH; Tan J; Bi C; Lee XT; Selvarajan V; Ng SB; Yang H; Yu Q; Chng WJ
    Blood; 2016 Aug; 128(7):948-58. PubMed ID: 27297789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A receptor-independent, cell-based JAK activation assay for screening for JAK3-specific inhibitors.
    Oh K; Joo KM; Jung YS; Lee J; Kang H; Lee HY; Lee DS
    J Immunol Methods; 2010 Mar; 354(1-2):45-52. PubMed ID: 20138049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CP-690,550, a therapeutic agent, inhibits cytokine-mediated Jak3 activation and proliferation of T cells from patients with ATL and HAM/TSP.
    Ju W; Zhang M; Jiang JK; Thomas CJ; Oh U; Bryant BR; Chen J; Sato N; Tagaya Y; Morris JC; Janik JE; Jacobson S; Waldmann TA
    Blood; 2011 Feb; 117(6):1938-46. PubMed ID: 21106989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exome sequencing identifies somatic mutations of DDX3X in natural killer/T-cell lymphoma.
    Jiang L; Gu ZH; Yan ZX; Zhao X; Xie YY; Zhang ZG; Pan CM; Hu Y; Cai CP; Dong Y; Huang JY; Wang L; Shen Y; Meng G; Zhou JF; Hu JD; Wang JF; Liu YH; Yang LH; Zhang F; Wang JM; Wang Z; Peng ZG; Chen FY; Sun ZM; Ding H; Shi JM; Hou J; Yan JS; Shi JY; Xu L; Li Y; Lu J; Zheng Z; Xue W; Zhao WL; Chen Z; Chen SJ
    Nat Genet; 2015 Sep; 47(9):1061-6. PubMed ID: 26192917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. JAK3 in clear cell renal cell carcinoma: mutational screening and clinical implications.
    de Martino M; Gigante M; Cormio L; Prattichizzo C; Cavalcanti E; Gigante M; Ariano V; Netti GS; Montemurno E; Mancini V; Battaglia M; Gesualdo L; Carrieri G; Ranieri E
    Urol Oncol; 2013 Aug; 31(6):930-7. PubMed ID: 21868263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Jak1 has a dominant role over Jak3 in signal transduction through γc-containing cytokine receptors.
    Haan C; Rolvering C; Raulf F; Kapp M; Drückes P; Thoma G; Behrmann I; Zerwes HG
    Chem Biol; 2011 Mar; 18(3):314-23. PubMed ID: 21439476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional RNAi screen targeting cytokine and growth factor receptors reveals oncorequisite role for interleukin-2 gamma receptor in JAK3-mutation-positive leukemia.
    Agarwal A; MacKenzie RJ; Eide CA; Davare MA; Watanabe-Smith K; Tognon CE; Mongoue-Tchokote S; Park B; Braziel RM; Tyner JW; Druker BJ
    Oncogene; 2015 Jun; 34(23):2991-9. PubMed ID: 25109334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo impact of JAK3 A573V mutation revealed using zebrafish.
    Basheer F; Bulleeraz V; Ngo VQT; Liongue C; Ward AC
    Cell Mol Life Sci; 2022 May; 79(6):322. PubMed ID: 35622134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Failure of tofacitinib to achieve an objective response in a
    Wong J; Wall M; Corboy GP; Taubenheim N; Gregory GP; Opat S; Shortt J
    Cold Spring Harb Mol Case Stud; 2020 Aug; 6(4):. PubMed ID: 32843425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. JAK3 mutants transform hematopoietic cells through JAK1 activation, causing T-cell acute lymphoblastic leukemia in a mouse model.
    Degryse S; de Bock CE; Cox L; Demeyer S; Gielen O; Mentens N; Jacobs K; Geerdens E; Gianfelici V; Hulselmans G; Fiers M; Aerts S; Meijerink JP; Tousseyn T; Cools J
    Blood; 2014 Nov; 124(20):3092-100. PubMed ID: 25193870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The molecular mechanism of curcumol on inducing cell growth arrest and apoptosis in Jurkat cells, a model of CD4⁺ T cells.
    Wang H; Wang Y; Jiang X; Wang Z; Zhong B; Fang Y
    Int Immunopharmacol; 2014 Aug; 21(2):375-82. PubMed ID: 24877754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Partial trisomy 21 contributes to T-cell malignancies induced by JAK3-activating mutations in murine models.
    Rivera-Munoz P; Laurent AP; Siret A; Lopez CK; Ignacimouttou C; Cornejo MG; Bawa O; Rameau P; Bernard OA; Dessen P; Gilliland GD; Mercher T; Malinge S
    Blood Adv; 2018 Jul; 2(13):1616-1627. PubMed ID: 29986854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.