These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

417 related articles for article (PubMed ID: 22706661)

  • 1. Improved antireflection properties of moth eye mimicking nanopillars on transparent glass: flat antireflection and color tuning.
    Ji S; Park J; Lim H
    Nanoscale; 2012 Aug; 4(15):4603-10. PubMed ID: 22706661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal moth eye nanostructure array on transparent glass towards broadband antireflection.
    Ji S; Song K; Nguyen TB; Kim N; Lim H
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):10731-7. PubMed ID: 24116953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced power generation in concentrated photovoltaics using broadband antireflective coverglasses with moth eye structures.
    Song YM; Jeong Y; Yeo CI; Lee YT
    Opt Express; 2012 Nov; 20(23):A916-23. PubMed ID: 23326839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures.
    Huang YF; Chattopadhyay S; Jen YJ; Peng CY; Liu TA; Hsu YK; Pan CL; Lo HC; Hsu CH; Chang YH; Lee CS; Chen KH; Chen LC
    Nat Nanotechnol; 2007 Dec; 2(12):770-4. PubMed ID: 18654429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoscale of biomimetic moth eye structures exhibiting inverse polarization phenomena at the Brewster angle.
    Chuang SY; Chen HL; Shieh J; Lin CH; Cheng CC; Liu HW; Yu CC
    Nanoscale; 2010 May; 2(5):799-805. PubMed ID: 20648327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomimetic antireflective hierarchical arrays.
    Xu H; Lu N; Shi G; Qi D; Yang B; Li H; Xu W; Chi L
    Langmuir; 2011 Apr; 27(8):4963-7. PubMed ID: 21438564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomimetic artificial Si compound eye surface structures with broadband and wide-angle antireflection properties for Si-based optoelectronic applications.
    Leem JW; Song YM; Yu JS
    Nanoscale; 2013 Nov; 5(21):10455-60. PubMed ID: 24056915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antireflective "moth-eye" structures on tunable optical silicone membranes.
    Brunner R; Keil B; Morhard C; Lehr D; Draheim J; Wallrabe U; Spatz J
    Appl Opt; 2012 Jul; 51(19):4370-6. PubMed ID: 22772109
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Broadband and crack-free antireflection coatings by self-assembled moth eye patterns.
    Galeotti F; Trespidi F; Timò G; Pasini M
    ACS Appl Mater Interfaces; 2014 Apr; 6(8):5827-34. PubMed ID: 24670669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alternative moth-eye nanostructures: antireflective properties and composition of dimpled corneal nanocoatings in silk-moth ancestors.
    Kryuchkov M; Lehmann J; Schaab J; Cherepanov V; Blagodatski A; Fiebig M; Katanaev VL
    J Nanobiotechnology; 2017 Sep; 15(1):61. PubMed ID: 28877691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tailored antireflective biomimetic nanostructures for UV applications.
    Morhard C; Pacholski C; Lehr D; Brunner R; Helgert M; Sundermann M; Spatz JP
    Nanotechnology; 2010 Oct; 21(42):425301. PubMed ID: 20858934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glass Flow Evolution and the Mechanism of Antireflective Nanoprotrusion Arrays in Nanoholes by Direct Thermal Imprinting.
    Feng Y; Liu X; Li K; Gong F; Shen J; Lou Y
    ACS Appl Mater Interfaces; 2021 Apr; 13(14):16968-16977. PubMed ID: 33787217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Moth-Eye Mimicking Solid Slippery Glass Surface with Icephobicity, Transparency, and Self-Healing.
    Han G; Nguyen TB; Park S; Jung Y; Lee J; Lim H
    ACS Nano; 2020 Aug; 14(8):10198-10209. PubMed ID: 32700892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement in broadband and quasi-omnidirectional antireflection of nanopillar arrays by ion milling.
    Huang Z; Hawkeye MM; Brett MJ
    Nanotechnology; 2012 Jul; 23(27):275703. PubMed ID: 22705498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomimetic Moth-eye Nanofabrication: Enhanced Antireflection with Superior Self-cleaning Characteristic.
    Sun J; Wang X; Wu J; Jiang C; Shen J; Cooper MA; Zheng X; Liu Y; Yang Z; Wu D
    Sci Rep; 2018 Apr; 8(1):5438. PubMed ID: 29615712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inverse Moth Eye Nanostructures with Enhanced Antireflection and Contamination Resistance.
    Diao Z; Hirte J; Chen W; Spatz JP
    ACS Omega; 2017 Aug; 2(8):5012-5018. PubMed ID: 31457778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexible Self-Cleaning Broadband Antireflective Film Inspired by the Transparent Cicada Wings.
    Han Z; Wang Z; Li B; Feng X; Jiao Z; Zhang J; Zhao J; Niu S; Ren L
    ACS Appl Mater Interfaces; 2019 May; 11(18):17019-17027. PubMed ID: 30993966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization and continuous fabrication of moth-eye nanostructure array on flexible polyethylene terephthalate substrate towards broadband antireflection.
    Zhang C; Yi P; Peng L; Ni J
    Appl Opt; 2017 Apr; 56(10):2901-2907. PubMed ID: 28375259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomimetic hierarchical ZnO structure with superhydrophobic and antireflective properties.
    Xiong J; Das SN; Shin B; Kar JP; Choi JH; Myoung JM
    J Colloid Interface Sci; 2010 Oct; 350(1):344-7. PubMed ID: 20637472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Size-dependent optical behavior of disordered nanostructures on glass substrates.
    Park GC; Song YM; Kang EK; Lee YT
    Appl Opt; 2012 Aug; 51(24):5890-6. PubMed ID: 22907018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.