These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 22706943)

  • 21. Ability of different physical activity monitors to detect movement during treadmill walking.
    Leenders NY; Nelson TE; Sherman WM
    Int J Sports Med; 2003 Jan; 24(1):43-50. PubMed ID: 12582951
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Energy expenditure at physical activities of young and middle-aged adults in southern China].
    Yu D; Zeng G; Li M; Mao D; Huang C; Piao J; Guo H; Cheng G; Peng M
    Wei Sheng Yan Jiu; 2010 Nov; 39(6):715-8. PubMed ID: 21351638
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Total energy expenditure estimated using foot-ground contact pedometry.
    Hoyt RW; Buller MJ; Santee WR; Yokota M; Weyand PG; Delany JP
    Diabetes Technol Ther; 2004 Feb; 6(1):71-81. PubMed ID: 15000774
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Energy expenditure on different physical activities of rural adults in North China].
    Gao Z; Wang X; Zhuo Q; Wang J; Hu F; Piao J; Liu F; Cao H
    Wei Sheng Yan Jiu; 2012 Jan; 41(1):75-9. PubMed ID: 22443063
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A new 2-regression model for the Actical accelerometer.
    Crouter SE; Bassett DR
    Br J Sports Med; 2008 Mar; 42(3):217-24. PubMed ID: 17761786
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Activity analysis of English Premiership rugby football union refereeing.
    Martin J; Smith NC; Tolfrey K; Jones AM
    Ergonomics; 2001 Oct; 44(12):1069-75. PubMed ID: 11780729
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Detection of type, duration, and intensity of physical activity using an accelerometer.
    Bonomi AG; Goris AH; Yin B; Westerterp KR
    Med Sci Sports Exerc; 2009 Sep; 41(9):1770-7. PubMed ID: 19657292
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An evaluation of measurement systems estimating gait speed during a loaded military march over graded terrain.
    Veenstra BJ; Wyss T; Roos L; Delves SK; Buller M; Beeler N
    Gait Posture; 2018 Mar; 61():204-209. PubMed ID: 29413785
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Energy cost and metabolic power in elite soccer: a new match analysis approach.
    Osgnach C; Poser S; Bernardini R; Rinaldo R; di Prampero PE
    Med Sci Sports Exerc; 2010 Jan; 42(1):170-8. PubMed ID: 20010116
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Real-time estimation of daily physical activity intensity by a triaxial accelerometer and a gravity-removal classification algorithm.
    Ohkawara K; Oshima Y; Hikihara Y; Ishikawa-Takata K; Tabata I; Tanaka S
    Br J Nutr; 2011 Jun; 105(11):1681-91. PubMed ID: 21262061
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A wearable sensor module with a neural-network-based activity classification algorithm for daily energy expenditure estimation.
    Lin CW; Yang YT; Wang JS; Yang YC
    IEEE Trans Inf Technol Biomed; 2012 Sep; 16(5):991-8. PubMed ID: 22875251
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Energy expenditure estimation during daily military routine with body-fixed sensors.
    Wyss T; Mäder U
    Mil Med; 2011 May; 176(5):494-9. PubMed ID: 21634292
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ambulatory physical activity, disease severity, and employment status in adult women with osteoarthritis of the hip.
    Hirata S; Ono R; Yamada M; Takikawa S; Nishiyama T; Hasuda K; Kurosaka M
    J Rheumatol; 2006 May; 33(5):939-45. PubMed ID: 16652424
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Aspects of activity behavior as a determinant of the physical activity level.
    Bonomi AG; Plasqui G; Goris AH; Westerterp KR
    Scand J Med Sci Sports; 2012 Feb; 22(1):139-45. PubMed ID: 20536909
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Estimation of stride length in level walking using an inertial measurement unit attached to the foot: a validation of the zero velocity assumption during stance.
    Peruzzi A; Della Croce U; Cereatti A
    J Biomech; 2011 Jul; 44(10):1991-4. PubMed ID: 21601860
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prediction of foot clearance parameters as a precursor to forecasting the risk of tripping and falling.
    Lai DT; Taylor SB; Begg RK
    Hum Mov Sci; 2012 Apr; 31(2):271-83. PubMed ID: 21035220
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The physiological requirements of Soccer refereeing.
    Johnston L; McNaughton L
    Aust J Sci Med Sport; 1994; 26(3-4):67-72. PubMed ID: 8665280
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prediction equations of energy expenditure in Chinese youth based on step frequency during walking and running.
    Sun B; Liu Y; Li JX; Li H; Chen P
    Res Q Exerc Sport; 2013 Dec; 84 Suppl 2():S64-71. PubMed ID: 24527568
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Energy expended by adults with and without intellectual disabilities during activities of daily living.
    Lante K; Reece J; Walkley J
    Res Dev Disabil; 2010; 31(6):1380-9. PubMed ID: 20685074
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Accuracy of an infrared LED device to measure heart rate and energy expenditure during rest and exercise.
    Lee CM; Gorelick M; Mendoza A
    J Sports Sci; 2011 Dec; 29(15):1645-53. PubMed ID: 21995327
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.