These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 22706981)

  • 1. Experimental investigation and constitutive modeling of the 3D histomechanical properties of vein tissue.
    Sokolis DP
    Biomech Model Mechanobiol; 2013 Jun; 12(3):431-51. PubMed ID: 22706981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microstructure-based constitutive modeling for the large intestine validated by histological observations.
    Sokolis DP; Sassani SG
    J Mech Behav Biomed Mater; 2013 May; 21():149-66. PubMed ID: 23545202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential histomechanical response of carotid artery in relation to species and region: mathematical description accounting for elastin and collagen anisotropy.
    Sokolis DP; Sassani S; Kritharis EP; Tsangaris S
    Med Biol Eng Comput; 2011 Aug; 49(8):867-79. PubMed ID: 21626234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical and histological characteristics of passive esophagus: experimental investigation and comparative constitutive modeling.
    Stavropoulou EA; Dafalias YF; Sokolis DP
    J Biomech; 2009 Dec; 42(16):2654-63. PubMed ID: 19766221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiaxial mechanical behaviour of the passive ureteral wall: experimental study and mathematical characterisation.
    Sokolis DP
    Comput Methods Biomech Biomed Engin; 2012; 15(11):1145-56. PubMed ID: 21660781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A structural model of the venous wall considering elastin anisotropy.
    Rezakhaniha R; Stergiopulos N
    J Biomech Eng; 2008 Jun; 130(3):031017. PubMed ID: 18532866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-course of venous wall biomechanical adaptation in pressure and flow-overload: assessment by a microstructure-based material model.
    Sassani SG; Theofani A; Tsangaris S; Sokolis DP
    J Biomech; 2013 Sep; 46(14):2451-62. PubMed ID: 23953505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regional variations in the nonlinearity and anisotropy of bovine aortic elastin.
    Agrawal V; Kollimada SA; Byju AG; Gundiah N
    Biomech Model Mechanobiol; 2013 Nov; 12(6):1181-94. PubMed ID: 23397509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiscale, structure-based modeling for the elastic mechanical behavior of arterial walls.
    Stylianopoulos T; Barocas VH
    J Biomech Eng; 2007 Aug; 129(4):611-8. PubMed ID: 17655483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and characterisation of regional variations in the material properties of ureter according to microstructure.
    Sokolis DP
    Comput Methods Biomech Biomed Engin; 2014 Nov; 17(15):1653-70. PubMed ID: 23439210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling the mechanical response of elastin for arterial tissue.
    Watton PN; Ventikos Y; Holzapfel GA
    J Biomech; 2009 Jun; 42(9):1320-5. PubMed ID: 19394942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of elastin anisotropy in structural strain energy functions of arterial tissue.
    Rezakhaniha R; Fonck E; Genoud C; Stergiopulos N
    Biomech Model Mechanobiol; 2011 Jul; 10(4):599-611. PubMed ID: 21058025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Constitutive modeling of an electrospun tubular scaffold used for vascular tissue engineering.
    Hu JJ
    Biomech Model Mechanobiol; 2015 Aug; 14(4):897-913. PubMed ID: 25556011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D biomechanical properties of the layered esophagus: Fung-type SEF and new constitutive model.
    Ren P; Deng X; Li K; Li G; Li W
    Biomech Model Mechanobiol; 2021 Oct; 20(5):1775-1788. PubMed ID: 34132899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-based constitutive model can accurately predict planar biaxial properties of aortic wall tissue.
    Polzer S; Gasser TC; Novak K; Man V; Tichy M; Skacel P; Bursa J
    Acta Biomater; 2015 Mar; 14():133-45. PubMed ID: 25458466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical behavior and histological organization of the three-layered passive esophagus as a function of topography.
    Stavropoulou EA; Dafalias YF; Sokolis DP
    Proc Inst Mech Eng H; 2012 Jun; 226(6):477-90. PubMed ID: 22783764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A strain energy function for arteries accounting for wall composition and structure.
    Zulliger MA; Fridez P; Hayashi K; Stergiopulos N
    J Biomech; 2004 Jul; 37(7):989-1000. PubMed ID: 15165869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D Mechanical properties of the layered esophagus: experiment and constitutive model.
    Yang W; Fung TC; Chian KS; Chong CK
    J Biomech Eng; 2006 Dec; 128(6):899-908. PubMed ID: 17154692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variation of Passive Biomechanical Properties of the Small Intestine along Its Length: Microstructure-Based Characterization.
    Sokolis DP
    Bioengineering (Basel); 2021 Feb; 8(3):. PubMed ID: 33652760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A passive strain-energy function for elastic and muscular arteries: correlation of material parameters with histological data.
    Sokolis DP
    Med Biol Eng Comput; 2010 Jun; 48(6):507-18. PubMed ID: 20390462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.