These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 22707190)
61. Generation and characterization of pluripotent stem cells from cloned bovine embryos. Wang L; Duan E; Sung LY; Jeong BS; Yang X; Tian XC Biol Reprod; 2005 Jul; 73(1):149-55. PubMed ID: 15744021 [TBL] [Abstract][Full Text] [Related]
62. Derivation and characterization of two genetically unique human embryonic stem cell lines on in-house-derived human feeders. Kumar N; Hinduja I; Nagvenkar P; Pillai L; Zaveri K; Mukadam L; Telang J; Desai S; Mangoli V; Mangoli R; Padgaonkar S; Kaur G; Puri C; Bhartiya D Stem Cells Dev; 2009 Apr; 18(3):435-45. PubMed ID: 18699724 [TBL] [Abstract][Full Text] [Related]
63. Derivation and characterization of two sibling human embryonic stem cell lines from discarded grade III embryos. Inamdar MS; Venu P; Srinivas MS; Rao K; VijayRaghavan K Stem Cells Dev; 2009 Apr; 18(3):423-33. PubMed ID: 18616385 [TBL] [Abstract][Full Text] [Related]
64. Immortalized human skin fibroblast feeder cells support growth and maintenance of both human embryonic and induced pluripotent stem cells. Unger C; Gao S; Cohen M; Jaconi M; Bergstrom R; Holm F; Galan A; Sanchez E; Irion O; Dubuisson JB; Giry-Laterriere M; Salmon P; Simon C; Hovatta O; Feki A Hum Reprod; 2009 Oct; 24(10):2567-81. PubMed ID: 19556288 [TBL] [Abstract][Full Text] [Related]
65. L-Proline induces differentiation of ES cells: a novel role for an amino acid in the regulation of pluripotent cells in culture. Washington JM; Rathjen J; Felquer F; Lonic A; Bettess MD; Hamra N; Semendric L; Tan BS; Lake JA; Keough RA; Morris MB; Rathjen PD Am J Physiol Cell Physiol; 2010 May; 298(5):C982-92. PubMed ID: 20164384 [TBL] [Abstract][Full Text] [Related]
66. Zebrafish embryonic stem cells. Fan L; Collodi P Methods Enzymol; 2006; 418():64-77. PubMed ID: 17141029 [TBL] [Abstract][Full Text] [Related]
67. Abrogation of E-cadherin-mediated cellular aggregation allows proliferation of pluripotent mouse embryonic stem cells in shake flask bioreactors. Mohamet L; Lea ML; Ward CM PLoS One; 2010 Sep; 5(9):e12921. PubMed ID: 20886069 [TBL] [Abstract][Full Text] [Related]
68. Derivation and characterization of haploid embryonic stem cell cultures in medaka fish. Yi M; Hong N; Hong Y Nat Protoc; 2010 Aug; 5(8):1418-30. PubMed ID: 20671725 [TBL] [Abstract][Full Text] [Related]
69. Isolation and differentiation of medaka embryonic stem cells. Hong Y; Schartl M Methods Mol Biol; 2006; 329():3-16. PubMed ID: 16845980 [TBL] [Abstract][Full Text] [Related]
70. STAT3 and SMAD1 signaling in Medaka embryonic stem-like cells and blastula embryos. Wagner TU; Kraeussling M; Fedorov LM; Reiss C; Kneitz B; Schartl M Stem Cells Dev; 2009; 18(1):151-60. PubMed ID: 18554090 [TBL] [Abstract][Full Text] [Related]
72. In vivo differentiation potential of buffalo (Bubalus bubalis) embryonic stem cell. Verma OP; Kumar R; Nath A; Sharma M; Dubey PK; Kumar GS; Sharma GT In Vitro Cell Dev Biol Anim; 2012 Jun; 48(6):349-58. PubMed ID: 22678753 [TBL] [Abstract][Full Text] [Related]
73. Long-term culture of Japanese human embryonic stem cells in feeder-free conditions. Navarro-Alvarez N; Soto-Gutierrez A; Yuasa T; Yamatsuji T; Shirakawa Y; Nagasaka T; Sun SD; Javed MS; Tanaka N; Kobayashi N Cell Transplant; 2008; 17(1-2):27-33. PubMed ID: 18468232 [TBL] [Abstract][Full Text] [Related]
74. Pluripotency and chimera competence of an embryonic stem cell line from the sea perch (Lateolabrax japonicus). Chen SL; Sha ZX; Ye HQ; Liu Y; Tian YS; Hong Y; Tang QS Mar Biotechnol (NY); 2007; 9(1):82-91. PubMed ID: 17136469 [TBL] [Abstract][Full Text] [Related]
75. [The mechanism of vasculogenesis: the critical role of transforming growth factor-beta 1 in the formation of vessel-like structures during the differentiation in vitro of murine embryonic stem cells]. Tsung HC; Yao Z Shi Yan Sheng Wu Xue Bao; 1996 Sep; 29(3):273-85. PubMed ID: 9639813 [TBL] [Abstract][Full Text] [Related]
76. Feeder-free generation and long-term culture of human induced pluripotent stem cells using pericellular matrix of decidua derived mesenchymal cells. Fukusumi H; Shofuda T; Kanematsu D; Yamamoto A; Suemizu H; Nakamura M; Yamasaki M; Ohgushi M; Sasai Y; Kanemura Y PLoS One; 2013; 8(1):e55226. PubMed ID: 23383118 [TBL] [Abstract][Full Text] [Related]
77. Seasonal changes in the histology of the pituitary gland of Labeo rohita (Ham.), an Indian freshwater major carp, in relation to it's spawning behavior. Moitra SK; Sarkar SK Gegenbaurs Morphol Jahrb; 1977; 123(1):84-102. PubMed ID: 914000 [No Abstract] [Full Text] [Related]
78. In vitro culture of bovine embryos in murine ES cell conditioned media negatively affects expression of pluripotency-related markers OCT4, SOX2 and SSEA1. Oliveira CS; de Souza MM; Saraiva NZ; Tetzner TA; Lima MR; Lopes FL; Garcia JM Reprod Domest Anim; 2012 Jun; 47(3):428-35. PubMed ID: 21933286 [TBL] [Abstract][Full Text] [Related]
79. Growth performance of two Indian major carps, catla (Catla catla) and rohu (Labeo rohita) fed diets containing different levels of Spirulina platensis. Nandeesha MC; Gangadhara B; Manissery JK; Venkataraman LV Bioresour Technol; 2001 Nov; 80(2):117-20. PubMed ID: 11563701 [TBL] [Abstract][Full Text] [Related]
80. Thermal stress causes nuclear and cellular abnormalities of peripheral erythrocytes in Indian major carp, rohu Labeo rohita. Ashaf-Ud-Doulah M; Shahjahan M; Islam SMM; Al-Emran M; Rahman MS; Hossain MAR J Therm Biol; 2019 Dec; 86():102450. PubMed ID: 31789238 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]