BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 22707301)

  • 21. Preparation of mica-based glass-ceramics with needle-like fluorapatite.
    Xiang Q; Liu Y; Sheng X; Dan X
    Dent Mater; 2007 Feb; 23(2):251-8. PubMed ID: 17134748
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mineralization of pristine chitosan film through biomimetic process.
    Baskar D; Balu R; Kumar TS
    Int J Biol Macromol; 2011 Oct; 49(3):385-9. PubMed ID: 21641923
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of wollastonite ceramics and bioactive glass on the formation of a bonelike apatite layer on a cobalt base alloy.
    Cortés DA; Medina A; Escobedo JC; Escobedo S; López MA
    J Biomed Mater Res A; 2004 Aug; 70(2):341-6. PubMed ID: 15227680
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization and in vivo evaluation of chitosan-hydroxyapatite bone scaffolds made by one step coprecipitation method.
    Danilchenko SN; Kalinkevich OV; Pogorelov MV; Kalinkevich AN; Sklyar AM; Kalinichenko TG; Ilyashenko VY; Starikov VV; Bumeyster VI; Sikora VZ; Sukhodub LF
    J Biomed Mater Res A; 2011 Mar; 96(4):639-47. PubMed ID: 21268238
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bone-like apatite layer formation on hydroxyapatite prepared by spark plasma sintering (SPS).
    Gu YW; Khor KA; Cheang P
    Biomaterials; 2004 Aug; 25(18):4127-34. PubMed ID: 15046903
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Effects of simulated body fluid flowing rate on bone-like apatite formation on porous calcium phosphate ceramics].
    Duan YR; Liu KW; Chen JY; Zhang XD
    Space Med Med Eng (Beijing); 2002 Jun; 15(3):203-7. PubMed ID: 12224554
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bilayered chitosan-based scaffolds for osteochondral tissue engineering: influence of hydroxyapatite on in vitro cytotoxicity and dynamic bioactivity studies in a specific double-chamber bioreactor.
    Malafaya PB; Reis RL
    Acta Biomater; 2009 Feb; 5(2):644-60. PubMed ID: 18951857
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chitosan/bioactive glass nanoparticles composites for biomedical applications.
    Luz GM; Mano JF
    Biomed Mater; 2012 Oct; 7(5):054104. PubMed ID: 22972166
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanism of apatite formation on pure titanium treated with alkaline solution.
    Wang CX; Zhou X; Wang M
    Biomed Mater Eng; 2004; 14(1):5-11. PubMed ID: 14757948
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Crystallization processes at the surface of polylactic acid-bioactive glass composites during immersion in simulated body fluid.
    Ginsac N; Chenal JM; Meille S; Pacard E; Zenati R; Hartmann DJ; Chevalier J
    J Biomed Mater Res B Appl Biomater; 2011 Nov; 99(2):412-9. PubMed ID: 21948519
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synthesis and characterization of macroporous chitosan/calcium phosphate composite scaffolds for tissue engineering.
    Zhang Y; Zhang M
    J Biomed Mater Res; 2001 Jun; 55(3):304-12. PubMed ID: 11255183
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 45S5 Bioglass-derived glass-ceramic scaffolds for bone tissue engineering.
    Chen QZ; Thompson ID; Boccaccini AR
    Biomaterials; 2006 Apr; 27(11):2414-25. PubMed ID: 16336997
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preparation and characterization of bioactive mesoporous wollastonite - Polycaprolactone composite scaffold.
    Wei J; Chen F; Shin JW; Hong H; Dai C; Su J; Liu C
    Biomaterials; 2009 Feb; 30(6):1080-8. PubMed ID: 19019424
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gel-derived bioglass as a compound of hydroxyapatite composites.
    Cholewa-Kowalska K; Kokoszka J; Laczka M; Niedźwiedzki L; Madej W; Osyczka AM
    Biomed Mater; 2009 Oct; 4(5):055007. PubMed ID: 19779249
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development and characterization of a bioglass/chitosan composite as an injectable bone substitute.
    Khoshakhlagh P; Rabiee SM; Kiaee G; Heidari P; Miri AK; Moradi R; Moztarzadeh F; Ravarian R
    Carbohydr Polym; 2017 Feb; 157():1261-1271. PubMed ID: 27987831
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhancing the biological activity of chitosan and controlling the degradation by nanoscale interaction with bioglass.
    Ravarian R; Craft M; Dehghani F
    J Biomed Mater Res A; 2015 Sep; 103(9):2898-908. PubMed ID: 25690303
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fabrication, characterization, and in vitro degradation of composite scaffolds based on PHBV and bioactive glass.
    Li H; Du R; Chang J
    J Biomater Appl; 2005 Oct; 20(2):137-55. PubMed ID: 16183674
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Preparation of zeolite-A/chitosan hybrid composites and their bioactivities and antimicrobial activities.
    Yu L; Gong J; Zeng C; Zhang L
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3652-60. PubMed ID: 23910261
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of simulated body fluid on the mechanical properties of multiblock poly(aliphatic/aromatic-ester) copolymers.
    Renke-Gluszko M; El Fray M
    Biomaterials; 2004 Sep; 25(21):5191-8. PubMed ID: 15109843
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mineralization behavior and interface properties of BG-PVA/bone composite implants in simulated body fluid.
    Ma Y; Zheng Y; Huang X; Xi T; Lin X; Han D; Song W
    Biomed Mater; 2010 Apr; 5(2):25003. PubMed ID: 20208130
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.