These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 22707455)

  • 1. Ultrasensitive detection of a protein by optical trapping in a photonic-plasmonic microcavity.
    Santiago-Cordoba MA; Cetinkaya M; Boriskina SV; Vollmer F; Demirel MC
    J Biophotonics; 2012 Aug; 5(8-9):629-38. PubMed ID: 22707455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Label-free Pb(II) whispering gallery mode sensing using self-assembled glutathione-modified gold nanoparticles on an optical microcavity.
    Panich S; Wilson KA; Nuttall P; Wood CK; Albrecht T; Edel JB
    Anal Chem; 2014 Jul; 86(13):6299-306. PubMed ID: 24871358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dressing plasmon resonance with particle-microcavity architecture for efficient nano-optical trapping and sensing.
    Zhang H; Zhou Y; Yu X; Luan F; Xu J; Ong HC; Ho HP
    Opt Lett; 2014 Feb; 39(4):873-6. PubMed ID: 24562229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Utilization of plasmonic and photonic crystal nanostructures for enhanced micro- and nanoparticle manipulation.
    Simmons CS; Knouf EC; Tewari M; Lin LY
    J Vis Exp; 2011 Sep; (55):. PubMed ID: 21988841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene induced high-Q hybridized plasmonic whispering gallery mode microcavities.
    Jiang M; Li J; Xu C; Wang S; Shan C; Xuan B; Ning Y; Shen D
    Opt Express; 2014 Oct; 22(20):23836-50. PubMed ID: 25321962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photonic-plasmonic mode coupling in on-chip integrated optoplasmonic molecules.
    Ahn W; Boriskina SV; Hong Y; Reinhard BM
    ACS Nano; 2012 Jan; 6(1):951-60. PubMed ID: 22148502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupling variation induced ultrasensitive label-free biosensing by using single mode coupled microcavity laser.
    Li H; Shang L; Tu X; Liu L; Xu L
    J Am Chem Soc; 2009 Nov; 131(46):16612-3. PubMed ID: 19919131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stand-off trapping and manipulation of sub-10 nm objects and biomolecules using opto-thermo-electrohydrodynamic tweezers.
    Hong C; Yang S; Ndukaife JC
    Nat Nanotechnol; 2020 Nov; 15(11):908-913. PubMed ID: 32868919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-linear plasmon response to protein binding at a nanostructured gold particle plasmon resonance surface.
    O'Reilly JP; Fisk JD; Rooth M; Perkins E; Shaw AM
    Phys Chem Chem Phys; 2007 Jan; 9(3):344-5. PubMed ID: 17199149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Guiding light in monolayers of sparse and random plasmonic meta-atoms.
    Otte MA; Estévez MC; Regatos D; Lechuga LM; Sepúlveda B
    ACS Nano; 2011 Nov; 5(11):9179-86. PubMed ID: 21981605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of nanoslotted photonic crystal waveguide cavities for single nanoparticle trapping and detection.
    Lin S; Hu J; Kimerling L; Crozier K
    Opt Lett; 2009 Nov; 34(21):3451-3. PubMed ID: 19881624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Whispering Gallery Mode Carousel--a photonic mechanism for enhanced nanoparticle detection in biosensing.
    Arnold S; Keng D; Shopova SI; Holler S; Zurawsky W; Vollmer F
    Opt Express; 2009 Apr; 17(8):6230-8. PubMed ID: 19365447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering photonic-plasmonic coupling in metal nanoparticle necklaces.
    Pasquale AJ; Reinhard BM; Dal Negro L
    ACS Nano; 2011 Aug; 5(8):6578-85. PubMed ID: 21739951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved detection limits of protein optical fiber biosensors coated with gold nanoparticles.
    Lepinay S; Staff A; Ianoul A; Albert J
    Biosens Bioelectron; 2014 Feb; 52():337-44. PubMed ID: 24080213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-mode lasing by tailoring the excitation of localized surface plasmon resonances to whispering gallery modes in a microring laser.
    Moradiani F; Arvanagh PE; Parsanasab GM; Kavosi A
    Opt Express; 2023 May; 31(10):16615-16622. PubMed ID: 37157737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A facile and cost-effective TEM grid approach to design gold nano-structured substrates for high throughput plasmonic sensitive detection of biomolecules.
    Jia K; Bijeon JL; Adam PM; Ionescu RE
    Analyst; 2013 Feb; 138(4):1015-9. PubMed ID: 23304693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoparticle-Enhanced Plasmonic Biosensor for Digital Biomarker Detection in a Microarray.
    Belushkin A; Yesilkoy F; Altug H
    ACS Nano; 2018 May; 12(5):4453-4461. PubMed ID: 29715005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laser trapping of colloidal metal nanoparticles.
    Lehmuskero A; Johansson P; Rubinsztein-Dunlop H; Tong L; Käll M
    ACS Nano; 2015; 9(4):3453-69. PubMed ID: 25808609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative study of Ag and Au nanoparticles biosensors based on surface plasmon resonance phenomenon.
    Lismont M; Dreesen L
    Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1437-42. PubMed ID: 24364943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity.
    Dantham VR; Holler S; Barbre C; Keng D; Kolchenko V; Arnold S
    Nano Lett; 2013 Jul; 13(7):3347-51. PubMed ID: 23777440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.