These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 22707712)

  • 1. Charge compensation mechanism of a Na+-coupled, secondary active glutamate transporter.
    Grewer C; Zhang Z; Mwaura J; Albers T; Schwartz A; Gameiro A
    J Biol Chem; 2012 Aug; 287(32):26921-31. PubMed ID: 22707712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cooperation of the conserved aspartate 439 and bound amino acid substrate is important for high-affinity Na+ binding to the glutamate transporter EAAC1.
    Tao Z; Grewer C
    J Gen Physiol; 2007 Apr; 129(4):331-44. PubMed ID: 17389249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neutralization of the aspartic acid residue Asp-367, but not Asp-454, inhibits binding of Na+ to the glutamate-free form and cycling of the glutamate transporter EAAC1.
    Tao Z; Zhang Z; Grewer C
    J Biol Chem; 2006 Apr; 281(15):10263-72. PubMed ID: 16478724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A K
    Wang J; Zielewicz L; Grewer C
    J Biol Chem; 2019 Aug; 294(32):12180-12190. PubMed ID: 31235523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thallium ions can replace both sodium and potassium ions in the glutamate transporter excitatory amino acid carrier 1.
    Tao Z; Gameiro A; Grewer C
    Biochemistry; 2008 Dec; 47(48):12923-30. PubMed ID: 18986164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protonation state of a conserved acidic amino acid involved in Na(+) binding to the glutamate transporter EAAC1.
    Mwaura J; Tao Z; James H; Albers T; Schwartz A; Grewer C
    ACS Chem Neurosci; 2012 Dec; 3(12):1073-83. PubMed ID: 23259042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrogenic Steps Associated with Substrate Binding to the Neuronal Glutamate Transporter EAAC1.
    Tanui R; Tao Z; Silverstein N; Kanner B; Grewer C
    J Biol Chem; 2016 May; 291(22):11852-64. PubMed ID: 27044739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early intermediates in the transport cycle of the neuronal excitatory amino acid carrier EAAC1.
    Watzke N; Bamberg E; Grewer C
    J Gen Physiol; 2001 Jun; 117(6):547-62. PubMed ID: 11382805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Is the glutamate residue Glu-373 the proton acceptor of the excitatory amino acid carrier 1?
    Grewer C; Watzke N; Rauen T; Bicho A
    J Biol Chem; 2003 Jan; 278(4):2585-92. PubMed ID: 12419818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of cation binding to the glutamate transporter EAAC1 probed with mutation of the conserved amino acid residue Thr101.
    Tao Z; Rosental N; Kanner BI; Gameiro A; Mwaura J; Grewer C
    J Biol Chem; 2010 Jun; 285(23):17725-33. PubMed ID: 20378543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The equivalent of a thallium binding residue from an archeal homolog controls cation interactions in brain glutamate transporters.
    Teichman S; Qu S; Kanner BI
    Proc Natl Acad Sci U S A; 2009 Aug; 106(34):14297-302. PubMed ID: 19706515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy Landscape of the Substrate Translocation Equilibrium of Plasma-Membrane Glutamate Transporters.
    Wang J; Albers T; Grewer C
    J Phys Chem B; 2018 Jan; 122(1):28-39. PubMed ID: 29218993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Both reentrant loops of the sodium-coupled glutamate transporters contain molecular determinants of cation selectivity.
    Silverstein N; Sliman A; Stockner T; Kanner BI
    J Biol Chem; 2018 Sep; 293(37):14200-14209. PubMed ID: 30026234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glutamate translocation of the neuronal glutamate transporter EAAC1 occurs within milliseconds.
    Grewer C; Watzke N; Wiessner M; Rauen T
    Proc Natl Acad Sci U S A; 2000 Aug; 97(17):9706-11. PubMed ID: 10931942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two conformational changes are associated with glutamate translocation by the glutamate transporter EAAC1.
    Mim C; Tao Z; Grewer C
    Biochemistry; 2007 Aug; 46(31):9007-18. PubMed ID: 17630698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The conserved histidine 295 does not contribute to proton cotransport by the glutamate transporter EAAC1.
    Tao Z; Grewer C
    Biochemistry; 2005 Mar; 44(9):3466-76. PubMed ID: 15736956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport direction determines the kinetics of substrate transport by the glutamate transporter EAAC1.
    Zhang Z; Tao Z; Gameiro A; Barcelona S; Braams S; Rauen T; Grewer C
    Proc Natl Acad Sci U S A; 2007 Nov; 104(46):18025-30. PubMed ID: 17991780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The glutamate transporter subtypes EAAT4 and EAATs 1-3 transport glutamate with dramatically different kinetics and voltage dependence but share a common uptake mechanism.
    Mim C; Balani P; Rauen T; Grewer C
    J Gen Physiol; 2005 Dec; 126(6):571-89. PubMed ID: 16316976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Voltage dependence of transient and steady-state Na/K pump currents in myocytes.
    Gadsby DC; Nakao M; Bahinski A
    Mol Cell Biochem; 1989 Sep; 89(2):141-6. PubMed ID: 2554121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of Na+-dependent glutamate transport activity in synaptosomes, C6 glioma, and Xenopus oocytes expressing excitatory amino acid carrier 1 (EAAC1).
    Dowd LA; Coyle AJ; Rothstein JD; Pritchett DB; Robinson MB
    Mol Pharmacol; 1996 Mar; 49(3):465-73. PubMed ID: 8643086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.