These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 22707712)

  • 21. Conserved asparagine residue located in binding pocket controls cation selectivity and substrate interactions in neuronal glutamate transporter.
    Teichman S; Qu S; Kanner BI
    J Biol Chem; 2012 May; 287(21):17198-17205. PubMed ID: 22493292
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanism and potential sites of potassium interaction with glutamate transporters.
    Wang J; Zhang K; Goyal P; Grewer C
    J Gen Physiol; 2020 Oct; 152(10):. PubMed ID: 32835376
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The anion conductance of the glutamate transporter EAAC1 depends on the direction of glutamate transport.
    Watzke N; Grewer C
    FEBS Lett; 2001 Aug; 503(2-3):121-5. PubMed ID: 11513867
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evidence for a third sodium-binding site in glutamate transporters suggests an ion/substrate coupling model.
    Larsson HP; Wang X; Lev B; Baconguis I; Caplan DA; Vyleta NP; Koch HP; Diez-Sampedro A; Noskov SY
    Proc Natl Acad Sci U S A; 2010 Aug; 107(31):13912-7. PubMed ID: 20634426
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modulation of the neural glutamate transporter EAAC1 by the addicsin-interacting protein ARL6IP1.
    Akiduki S; Ikemoto MJ
    J Biol Chem; 2008 Nov; 283(46):31323-32. PubMed ID: 18684713
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Aspartate-444 is essential for productive substrate interactions in a neuronal glutamate transporter.
    Teichman S; Kanner BI
    J Gen Physiol; 2007 Jun; 129(6):527-39. PubMed ID: 17535962
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A conserved aspartate residue located at the extracellular end of the binding pocket controls cation interactions in brain glutamate transporters.
    Rosental N; Gameiro A; Grewer C; Kanner BI
    J Biol Chem; 2011 Dec; 286(48):41381-41390. PubMed ID: 21984827
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Voltage-independent sodium-binding events reported by the 4B-4C loop in the human glutamate transporter excitatory amino acid transporter 3.
    Koch HP; Hubbard JM; Larsson HP
    J Biol Chem; 2007 Aug; 282(34):24547-53. PubMed ID: 17588938
    [TBL] [Abstract][Full Text] [Related]  

  • 29. GAT1 (GABA:Na+:Cl-) cotransport function. Kinetic studies in giant Xenopus oocyte membrane patches.
    Lu CC; Hilgemann DW
    J Gen Physiol; 1999 Sep; 114(3):445-57. PubMed ID: 10469734
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulation of glial glutamate transporters by C-terminal domains.
    Leinenweber A; Machtens JP; Begemann B; Fahlke C
    J Biol Chem; 2011 Jan; 286(3):1927-37. PubMed ID: 21097502
    [TBL] [Abstract][Full Text] [Related]  

  • 31. On the mechanism of proton transport by the neuronal excitatory amino acid carrier 1.
    Watzke N; Rauen T; Bamberg E; Grewer C
    J Gen Physiol; 2000 Nov; 116(5):609-22. PubMed ID: 11055990
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The surface density of the glutamate transporter EAAC1 is controlled by interactions with PDZK1 and AP2 adaptor complexes.
    D'Amico A; Soragna A; Di Cairano E; Panzeri N; Anzai N; Vellea Sacchi F; Perego C
    Traffic; 2010 Nov; 11(11):1455-70. PubMed ID: 20727120
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Individual subunits of the glutamate transporter EAAC1 homotrimer function independently of each other.
    Grewer C; Balani P; Weidenfeller C; Bartusel T; Tao Z; Rauen T
    Biochemistry; 2005 Sep; 44(35):11913-23. PubMed ID: 16128593
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cryo-EM structures of excitatory amino acid transporter 3 visualize coupled substrate, sodium, and proton binding and transport.
    Qiu B; Matthies D; Fortea E; Yu Z; Boudker O
    Sci Adv; 2021 Mar; 7(10):. PubMed ID: 33658209
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrogenic properties of the epithelial and neuronal high affinity glutamate transporter.
    Kanai Y; Nussberger S; Romero MF; Boron WF; Hebert SC; Hediger MA
    J Biol Chem; 1995 Jul; 270(28):16561-8. PubMed ID: 7622462
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Voltage dependence of Na translocation by the Na/K pump.
    Nakao M; Gadsby DC
    Nature; 1986 Oct 16-22; 323(6089):628-30. PubMed ID: 2430183
    [TBL] [Abstract][Full Text] [Related]  

  • 37. K+ amino acid transporter KAAT1 mutant Y147F has increased transport activity and altered substrate selectivity.
    Liu Z; Stevens BR; Feldman DH; Hediger MA; Harvey WR
    J Exp Biol; 2003 Jan; 206(Pt 2):245-54. PubMed ID: 12477895
    [TBL] [Abstract][Full Text] [Related]  

  • 38. C6 glioma cells differentiated by retinoic acid overexpress the glutamate transporter excitatory amino acid carrier 1 (EAAC1).
    Bianchi MG; Gazzola GC; Tognazzi L; Bussolati O
    Neuroscience; 2008 Feb; 151(4):1042-52. PubMed ID: 18207650
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modulation of Na(+),K(+) pumping and neurotransmitter uptake by beta-amyloid.
    Gu QB; Zhao JX; Fei J; Schwarz W
    Neuroscience; 2004; 126(1):61-7. PubMed ID: 15145073
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinetic mechanism of Na
    Trinco G; Arkhipova V; Garaeva AA; Hutter CAJ; Seeger MA; Guskov A; Slotboom DJ
    Commun Biol; 2021 Jun; 4(1):751. PubMed ID: 34140623
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.