These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 22708531)

  • 1. Wetting on the microscale: shape of a liquid drop on a microstructured surface at different length scales.
    Papadopoulos P; Deng X; Mammen L; Drotlef DM; Battagliarin G; Li C; Müllen K; Landfester K; Del Campo A; Butt HJ; Vollmer D
    Langmuir; 2012 Jul; 28(26):10136-9. PubMed ID: 22708531
    [No Abstract]   [Full Text] [Related]  

  • 2. Wetting transition and optimal design for microstructured surfaces with hydrophobic and hydrophilic materials.
    Park CI; Jeong HE; Lee SH; Cho HS; Suh KY
    J Colloid Interface Sci; 2009 Aug; 336(1):298-303. PubMed ID: 19426991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wetting on the microscale: shape of a liquid drop on a microstructured surface at different length scales.
    Papadopoulos P; Deng X; Mammen L; Drotlef DM; Battagliarin G; Li C; Müllen K; Landfester K; del Campo A; Butt HJ; Vollmer D
    Langmuir; 2012 Jun; 28(22):8392-8. PubMed ID: 22578130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pitch reduction lithography by pressure-assisted selective wetting and thermal reflow.
    Um HS; Chae JJ; Lee SH; Rahmawan Y; Suh KY
    J Colloid Interface Sci; 2012 Jun; 376(1):250-4. PubMed ID: 22465734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wettability control and patterning of PDMS using UV-ozone and water immersion.
    Ma K; Rivera J; Hirasaki GJ; Biswal SL
    J Colloid Interface Sci; 2011 Nov; 363(1):371-8. PubMed ID: 21840014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superhydrophobicity due to the hierarchical scale roughness of PDMS surfaces.
    Cortese B; D'Amone S; Manca M; Viola I; Cingolani R; Gigli G
    Langmuir; 2008 Mar; 24(6):2712-8. PubMed ID: 18217778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineered antifouling microtopographies--correlating wettability with cell attachment.
    Carman ML; Estes TG; Feinberg AW; Schumacher JF; Wilkerson W; Wilson LH; Callow ME; Callow JA; Brennan AB
    Biofouling; 2006; 22(1-2):11-21. PubMed ID: 16551557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of rough surfaces with vibrated drops.
    Bormashenko E; Pogreb R; Stein T; Whyman G; Erlich M; Musin A; Machavariani V; Aurbach D
    Phys Chem Chem Phys; 2008 Jul; 10(27):4056-61. PubMed ID: 18597020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Why do pigeon feathers repel water? Hydrophobicity of pennae, Cassie-Baxter wetting hypothesis and Cassie-Wenzel capillarity-induced wetting transition.
    Bormashenko E; Bormashenko Y; Stein T; Whyman G; Bormashenko E
    J Colloid Interface Sci; 2007 Jul; 311(1):212-6. PubMed ID: 17359990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BHK cells behaviour on laser treated polydimethylsiloxane surface.
    Khorasani MT; Mirzadeh H
    Colloids Surf B Biointerfaces; 2004 May; 35(1):67-71. PubMed ID: 15261058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Topography printing to locally control wettability.
    Zheng Z; Azzaroni O; Zhou F; Huck WT
    J Am Chem Soc; 2006 Jun; 128(24):7730-1. PubMed ID: 16771474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The impact of additives found in industrial formulations of TCE on the wettability of sandstone.
    Harrold G; Lerner DN; Leharne SA
    J Contam Hydrol; 2005 Nov; 80(1-2):1-17. PubMed ID: 16099534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Encoding complex wettability patterns in chemically functionalized 3D photonic crystals.
    Burgess IB; Mishchenko L; Hatton BD; Kolle M; Lončar M; Aizenberg J
    J Am Chem Soc; 2011 Aug; 133(32):12430-2. PubMed ID: 21766862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emulsions stabilised by food colloid particles: role of particle adsorption and wettability at the liquid interface.
    Paunov VN; Cayre OJ; Noble PF; Stoyanov SD; Velikov KP; Golding M
    J Colloid Interface Sci; 2007 Aug; 312(2):381-9. PubMed ID: 17449055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wetting transitions in two-, three-, and four-phase systems.
    Hejazi V; Nosonovsky M
    Langmuir; 2012 Jan; 28(4):2173-80. PubMed ID: 22054126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of superhydrophobic surfaces from microstructured ZnO-based surfaces via a wet-chemical route.
    Wu X; Zheng L; Wu D
    Langmuir; 2005 Mar; 21(7):2665-7. PubMed ID: 15779932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface wetting: liquids shape up nicely.
    McHale G
    Nat Mater; 2007 Sep; 6(9):627-8. PubMed ID: 17767179
    [No Abstract]   [Full Text] [Related]  

  • 19. Dynamic wettability properties of a soft contact lens hydrogel.
    Ketelson HA; Meadows DL; Stone RP
    Colloids Surf B Biointerfaces; 2005 Jan; 40(1):1-9. PubMed ID: 15620833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of surface energy and water wettability in aminoalkyl/fluorocarbon/hydrocarbon-modified xerogel surfaces in the control of marine biofouling.
    Bennett SM; Finlay JA; Gunari N; Wells DD; Meyer AE; Walker GC; Callow ME; Callow JA; Bright FV; Detty MR
    Biofouling; 2010; 26(2):235-46. PubMed ID: 19960390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.