These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 22708531)

  • 21. Three-dimensional interconnected microporous poly(dimethylsiloxane) microfluidic devices.
    Yuen PK; Su H; Goral VN; Fink KA
    Lab Chip; 2011 Apr; 11(8):1541-4. PubMed ID: 21359315
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of sessile drop volume on the wetting anisotropy observed on grooved surfaces.
    Yang J; Rose FR; Gadegaard N; Alexander MR
    Langmuir; 2009 Mar; 25(5):2567-71. PubMed ID: 19437741
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Collective behavior during the exit of a wetting liquid through a network of channels.
    Baroud CN; Wang XC; Masson JB
    J Colloid Interface Sci; 2008 Oct; 326(2):445-50. PubMed ID: 18656888
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The dynamic interaction of water with four dental impression materials during cure.
    Hosseinpour D; Berg JC
    J Prosthodont; 2009 Jun; 18(4):292-300. PubMed ID: 19210607
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Measuring the three-phase contact angle of nanoparticles at fluid interfaces.
    Arnaudov LN; Cayre OJ; Cohen Stuart MA; Stoyanov SD; Paunov VN
    Phys Chem Chem Phys; 2010 Jan; 12(2):328-31. PubMed ID: 20023808
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Anisotropic wetting of microstructured surfaces as a function of surface chemistry.
    Neuhaus S; Spencer ND; Padeste C
    ACS Appl Mater Interfaces; 2012 Jan; 4(1):123-30. PubMed ID: 22148671
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microcontact printing.
    Xie Y; Jiang X
    Methods Mol Biol; 2011; 671():239-48. PubMed ID: 20967634
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Wetting on nanoporous alumina surface: transition between Wenzel and Cassie states controlled by surface structure.
    Ran C; Ding G; Liu W; Deng Y; Hou W
    Langmuir; 2008 Sep; 24(18):9952-5. PubMed ID: 18702472
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Photoreactive coating for high-contrast spatial patterning of microfluidic device wettability.
    Abate AR; Krummel AT; Lee D; Marquez M; Holtze C; Weitz DA
    Lab Chip; 2008 Dec; 8(12):2157-60. PubMed ID: 19023480
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermal/plasma-driven reversible wettability switching of a bare gold film on a poly(dimethylsiloxane) surface by electroless plating.
    Wu J; Bai HJ; Zhang XB; Xu JJ; Chen HY
    Langmuir; 2010 Jan; 26(2):1191-8. PubMed ID: 19722553
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Amphiphilic block copolymer/poly(dimethylsiloxane) (PDMS) blends and nanocomposites for improved fouling-release.
    Martinelli E; Suffredini M; Galli G; Glisenti A; Pettitt ME; Callow ME; Callow JA; Williams D; Lyall G
    Biofouling; 2011 May; 27(5):529-41. PubMed ID: 21614701
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rationalization of the behavior of solid-liquid surface free energy of water in Cassie and Wenzel wetting states on rugged solid surfaces at the nanometer scale.
    Leroy F; Müller-Plathe F
    Langmuir; 2011 Jan; 27(2):637-45. PubMed ID: 21142209
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Surface-charge lithography for direct PDMS micro-patterning.
    Grilli S; Vespini V; Ferraro P
    Langmuir; 2008 Dec; 24(23):13262-5. PubMed ID: 18986187
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Wetting and dewetting transitions on hierarchical superhydrophobic surfaces.
    Boreyko JB; Baker CH; Poley CR; Chen CH
    Langmuir; 2011 Jun; 27(12):7502-9. PubMed ID: 21604679
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A microchip fabricated with a vapor-diffusion self-assembled-monolayer method to transport droplets across superhydrophobic to hydrophilic surfaces.
    Lai YH; Yang JT; Shieh DB
    Lab Chip; 2010 Feb; 10(4):499-504. PubMed ID: 20126691
    [TBL] [Abstract][Full Text] [Related]  

  • 36. UV/thermally driven rewritable wettability patterns on TiO2-PDMS composite films.
    Nakata K; Kimura H; Sakai M; Ochiai T; Sakai H; Murakami T; Abe M; Fujishima A
    ACS Appl Mater Interfaces; 2010 Sep; 2(9):2485-8. PubMed ID: 20712336
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-precision microcontact printing of interchangeable stamps using an integrated kinematic coupling.
    Trinkle CA; Lee LP
    Lab Chip; 2011 Feb; 11(3):455-9. PubMed ID: 21116585
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Wettability conversion from superoleophobic to superhydrophilic on titania/single-walled carbon nanotube composite coatings.
    Zhang M; Zhang T; Cui T
    Langmuir; 2011 Aug; 27(15):9295-301. PubMed ID: 21732680
    [TBL] [Abstract][Full Text] [Related]  

  • 39. "Lock-and-key" geometry effect of patterned surfaces: wettability and switching of adhesive force.
    Huang XJ; Kim DH; Im M; Lee JH; Yoon JB; Choi YK
    Small; 2009 Jan; 5(1):90-4. PubMed ID: 19040219
    [No Abstract]   [Full Text] [Related]  

  • 40. Barnacle settlement and the adhesion of protein and diatom microfouling to xerogel films with varying surface energy and water wettability.
    Finlay JA; Bennett SM; Brewer LH; Sokolova A; Clay G; Gunari N; Meyer AE; Walker GC; Wendt DE; Callow ME; Callow JA; Detty MR
    Biofouling; 2010 Aug; 26(6):657-66. PubMed ID: 20645195
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.