BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

476 related articles for article (PubMed ID: 22708567)

  • 1. Lysine post-translational modifications of collagen.
    Yamauchi M; Sricholpech M
    Essays Biochem; 2012; 52():113-33. PubMed ID: 22708567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of collagen and elastin cross-links.
    Yamauchi M; Taga Y; Hattori S; Shiiba M; Terajima M
    Methods Cell Biol; 2018; 143():115-132. PubMed ID: 29310773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lysine Hydroxylation and Cross-Linking of Collagen.
    Yamauchi M; Terajima M; Shiiba M
    Methods Mol Biol; 2019; 1934():309-324. PubMed ID: 31256387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Type I and type V procollagen triple helix uses different subsets of the molecular ensemble for lysine posttranslational modifications in the rER.
    Ishikawa Y; Taga Y; Zientek K; Mizuno N; Salo AM; Semenova O; Tufa SF; Keene DR; Holden P; Mizuno K; Gould DB; Myllyharju J; Bächinger HP
    J Biol Chem; 2021; 296():100453. PubMed ID: 33631195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glycation of type I collagen selectively targets the same helical domain lysine sites as lysyl oxidase-mediated cross-linking.
    Hudson DM; Archer M; King KB; Eyre DR
    J Biol Chem; 2018 Oct; 293(40):15620-15627. PubMed ID: 30143533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Collagen hydroxylysine glycosylation: non-conventional substrates for atypical glycosyltransferase enzymes.
    De Giorgi F; Fumagalli M; Scietti L; Forneris F
    Biochem Soc Trans; 2021 Apr; 49(2):855-866. PubMed ID: 33704379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Collagen cross-links in mineralizing tissues: a review of their chemistry, function, and clinical relevance.
    Knott L; Bailey AJ
    Bone; 1998 Mar; 22(3):181-7. PubMed ID: 9514209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Further studies on the effect of the collagen triple-helix formation on the hydroxylation of lysine and the glycosylations of hydroxylysine in chick-embryo tendon and cartilage cells.
    Oikarinen A; Anttinen H; Kivirikko KI
    Biochem J; 1977 Sep; 166(3):357-62. PubMed ID: 597231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glycosylation of Type I Collagen.
    Yamauchi M; Sricholpech M; Terajima M; Tomer KB; Perdivara I
    Methods Mol Biol; 2019; 1934():127-144. PubMed ID: 31256377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of S-hydroxylysyl-methionine as the covalent cross-link of the noncollagenous (NC1) hexamer of the alpha1alpha1alpha2 collagen IV network: a role for the post-translational modification of lysine 211 to hydroxylysine 211 in hexamer assembly.
    Vanacore RM; Friedman DB; Ham AJ; Sundaramoorthy M; Hudson BG
    J Biol Chem; 2005 Aug; 280(32):29300-10. PubMed ID: 15951440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Analysis of hydroxylation and O-glycosylation on lysine sites in deer-hide gelatin].
    Liu R; Cai S; Zhao KX; Jiang MT; Zheng YF; Xu HK; Hou R; Huang Y; Zhao M; Duan JA
    Zhongguo Zhong Yao Za Zhi; 2021 Feb; 46(3):591-598. PubMed ID: 33645024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic and nonenzymatic cross-linking of collagen and elastin.
    Reiser K; McCormick RJ; Rucker RB
    FASEB J; 1992 Apr; 6(7):2439-49. PubMed ID: 1348714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Collagen type I of rat cortical and trabecular bone differs in the extent of posttranslational modifications.
    Suarez KN; Romanello M; Bettica P; Moro L
    Calcif Tissue Int; 1996 Jan; 58(1):65-9. PubMed ID: 8825241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mimivirus collagen is modified by bifunctional lysyl hydroxylase and glycosyltransferase enzyme.
    Luther KB; Hülsmeier AJ; Schegg B; Deuber SA; Raoult D; Hennet T
    J Biol Chem; 2011 Dec; 286(51):43701-43709. PubMed ID: 22045808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyclophilin-B Modulates Collagen Cross-linking by Differentially Affecting Lysine Hydroxylation in the Helical and Telopeptidyl Domains of Tendon Type I Collagen.
    Terajima M; Taga Y; Chen Y; Cabral WA; Hou-Fu G; Srisawasdi S; Nagasawa M; Sumida N; Hattori S; Kurie JM; Marini JC; Yamauchi M
    J Biol Chem; 2016 Apr; 291(18):9501-12. PubMed ID: 26934917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tendon hypertrophy is associated with increased hydroxylation of nonhelical lysine residues at two specific cross-linking sites in type I collagen.
    Gerriets JE; Curwin SL; Last JA
    J Biol Chem; 1993 Dec; 268(34):25553-60. PubMed ID: 8244992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonenzymatic glucosylation of lysyl and hydroxylysyl residues in type I and type II collagens.
    Perejda AJ; Zaragoza EJ; Eriksen E; Uitto J
    Coll Relat Res; 1984 Dec; 4(6):427-39. PubMed ID: 6441673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decreased thermal denaturation temperature of osteogenesis imperfecta mutant collagen is independent of post-translational overmodifications of lysine and hydroxylysine.
    Rao VH; Steinmann B; de Wet W; Hollister DW
    J Biol Chem; 1989 Jan; 264(3):1793-8. PubMed ID: 2492283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinct post-translational features of type I collagen are conserved in mouse and human periodontal ligament.
    Hudson DM; Garibov M; Dixon DR; Popowics T; Eyre DR
    J Periodontal Res; 2017 Dec; 52(6):1042-1049. PubMed ID: 28631261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glycosylation and cross-linking in bone type I collagen.
    Terajima M; Perdivara I; Sricholpech M; Deguchi Y; Pleshko N; Tomer KB; Yamauchi M
    J Biol Chem; 2014 Aug; 289(33):22636-22647. PubMed ID: 24958722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.