These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 22708624)

  • 1. Interference, coupling, and nonlinear control of high-order modes in single asymmetric nanoantennas.
    Abb M; Wang Y; Albella P; de Groot CH; Aizpurua J; Muskens OL
    ACS Nano; 2012 Jul; 6(7):6462-70. PubMed ID: 22708624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visualizing the near-field coupling and interference of bonding and anti-bonding modes in infrared dimer nanoantennas.
    Alonso-González P; Albella P; Golmar F; Arzubiaga L; Casanova F; Hueso LE; Aizpurua J; Hillenbrand R
    Opt Express; 2013 Jan; 21(1):1270-80. PubMed ID: 23389020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective excitation of bright and dark plasmonic resonances of single gold nanorods.
    Demichel O; Petit M; Colas des Francs G; Bouhelier A; Hertz E; Billard F; de Fornel F; Cluzel B
    Opt Express; 2014 Jun; 22(12):15088-96. PubMed ID: 24977601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The modulation effect of transverse, antibonding, and higher-order longitudinal modes on the two-photon photoluminescence of gold plasmonic nanoantennas.
    Chen WL; Lin FC; Lee YY; Li FC; Chang YM; Huang JS
    ACS Nano; 2014 Sep; 8(9):9053-62. PubMed ID: 25207747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of Fano resonances in coupled plasmonic systems.
    Lovera A; Gallinet B; Nordlander P; Martin OJ
    ACS Nano; 2013 May; 7(5):4527-36. PubMed ID: 23614396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relation between near-field and far-field properties of plasmonic Fano resonances.
    Gallinet B; Martin OJ
    Opt Express; 2011 Oct; 19(22):22167-75. PubMed ID: 22109059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmonic coupling with most of the transition metals: a new family of broad band and near infrared nanoantennas.
    Manchon D; Lermé J; Zhang T; Mosset A; Jamois C; Bonnet C; Rye JM; Belarouci A; Broyer M; Pellarin M; Cottancin E
    Nanoscale; 2015 Jan; 7(3):1181-92. PubMed ID: 25488835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple-wavelength plasmonic nanoantennas.
    Boriskina SV; Dal Negro L
    Opt Lett; 2010 Feb; 35(4):538-40. PubMed ID: 20160810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bright and dark plasmon resonances of nanoplasmonic antennas evanescently coupled with a silicon nitride waveguide.
    Peyskens F; Subramanian AZ; Neutens P; Dhakal A; Van Dorpe P; Le Thomas N; Baets R
    Opt Express; 2015 Feb; 23(3):3088-101. PubMed ID: 25836168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large-area high-quality plasmonic oligomers fabricated by angle-controlled colloidal nanolithography.
    Zhao J; Frank B; Burger S; Giessen H
    ACS Nano; 2011 Nov; 5(11):9009-16. PubMed ID: 21958436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal polarization conversion in coupled dimer plasmonic nanoantennas for metasurfaces.
    Black LJ; Wang Y; de Groot CH; Arbouet A; Muskens OL
    ACS Nano; 2014 Jun; 8(6):6390-9. PubMed ID: 24805941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Linear and nonlinear optical properties of hybrid metallic-dielectric plasmonic nanoantennas.
    Hentschel M; Metzger B; Knabe B; Buse K; Giessen H
    Beilstein J Nanotechnol; 2016; 7():111-20. PubMed ID: 26925359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fano resonances in dipole-quadrupole plasmon coupling nanorod dimers.
    Yang ZJ; Zhang ZS; Zhang LH; Li QQ; Hao ZH; Wang QQ
    Opt Lett; 2011 May; 36(9):1542-4. PubMed ID: 21540921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of the Nanoscale Gap Morphology on the Plasmon Coupling in Asymmetric Nanoparticle Dimer Antennas.
    Popp PS; Herrmann JF; Fritz EC; Ravoo BJ; Höppener C
    Small; 2016 Mar; 12(12):1667-75. PubMed ID: 26849412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Excitation and tuning of higher-order Fano resonances in plasmonic oligomer clusters.
    Dregely D; Hentschel M; Giessen H
    ACS Nano; 2011 Oct; 5(10):8202-11. PubMed ID: 21879759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical Dark-Field and Electron Energy Loss Imaging and Spectroscopy of Symmetry-Forbidden Modes in Loaded Nanogap Antennas.
    Brintlinger T; Herzing AA; Long JP; Vurgaftman I; Stroud R; Simpkins BS
    ACS Nano; 2015 Jun; 9(6):6222-32. PubMed ID: 25961937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photonic-plasmonic mode coupling in on-chip integrated optoplasmonic molecules.
    Ahn W; Boriskina SV; Hong Y; Reinhard BM
    ACS Nano; 2012 Jan; 6(1):951-60. PubMed ID: 22148502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polarization conversion in plasmonic nanoantennas for metasurfaces using structural asymmetry and mode hybridization.
    Wiecha PR; Black LJ; Wang Y; Paillard V; Girard C; Muskens OL; Arbouet A
    Sci Rep; 2017 Jan; 7():40906. PubMed ID: 28102320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmonic behaviors of gold dimers perturbed by a single nanoparticle in the gap.
    Ye J; Van Dorpe P
    Nanoscale; 2012 Nov; 4(22):7205-11. PubMed ID: 23073071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas.
    Alonso-González P; Albella P; Neubrech F; Huck C; Chen J; Golmar F; Casanova F; Hueso LE; Pucci A; Aizpurua J; Hillenbrand R
    Phys Rev Lett; 2013 May; 110(20):203902. PubMed ID: 25167410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.